数学建模学习心得
数学建模也激发我们学习数学的兴趣,丰富了数学探索的情感体验。管理资源吧小编整理了学习数学建模心得体会范文,希望对你有帮助!
数学建模心得体会【1】 以前在大一时就曾听说过数学建模这一学科,但只是很肤浅的了解,还错误的以为这门学科只是跟数学有关系,只要数学学好了,学好数学建模就轻而易举了。因为自己数学一直很好,对数学建模很感兴趣,也很自信,于是,大二时毫无疑问地选修了数学建模这门专业选修课,但是选择了以后才发现根本不像自己想象的那样简单。选修课时,对数学建模有了进一步了解,数学建模主要包括三大部分的内容:统计,优化,微分和差分。但是这也只是表面上的了解而已,上课老师只针对某一部分,告诉你要针对这一部分具体该怎么做,只是一种固定的模式,没有自己的任何建模思想。
百度上对数学建模的定义是这样子的:当需要从定量的角度分析和研究一个实际问题时,人们就要在深入调查研究、了解对象信息、作出简化假设、分析内在规律等工作的基础上,
用数学的符号和语言,把它表述为数学式子,也就是数学模型,然后用通过计算得到的模型结果来解释实际问题,并接受实际的检验。这个建立数学模型的全过程就称为数学建模。不论是用数学方法在科技和生产领域解决哪类实际问题,还是与其它学科相结合形成交叉学科,首要的和关键的一步是建立研究对象的数学模型,并加以计算求解。数学建模和计算机技术在知识经济时代的作用可谓是如虎添翼。
数学建模是一种模拟,是用数学符号、数学式子、程序、图形等对实际课题本质属性的抽象而又简洁的刻划,它或能解释某些客观现象,或能预测未来的发展规律,或能为控制某一现象的发展提供某种意义下的最优策略或较好策略。数学模型一般并非现实问题的直接翻版,它的建立常常既需要人们对现实问题深入细微的观察和分析,又需要人们灵活巧妙地利用各种数学知识。这种应用知识从实际课题中抽象、提炼出数学模型的过程就称为数学建模数学建模数学建模数学建模。
matlab学好了有什么用 经过了这段时间对数学建模的学习,我终于对数学建模有了进一步的认识,数学建模是一个经历观察、思考、归类、抽象与总结的过程,也是一个信息捕捉、筛选、整理的过程,更是一个思想与方法的产生与选择的过程。它给我们再现了一种“微型科研”的过程。它激发
我们学习数学的兴趣,丰富了数学探索的情感体验;有利于我们自觉检验、巩固所学的数学知识,促进知识的深化、发展;有利于我们体会和感悟数学思想方法。
记得第一节课时,老师给我们解释什么是数学建模,老师举了一个简单的例子,“问题:树上有十只鸟,开打死一只,还剩几只?”,当时我们都觉得很奇怪,这问题很高深吗?这和数学建模有什么关系吗?紧接着老师就给我们解释了这道题,“是或别的无声的吗?不是。声有多大?80—100分贝。那就是说会震得耳朵疼?是。在这个城市里打鸟犯不犯法?不犯。您确定鸟里真的没有聋子?没有。有没有关在笼子里的?没有。边上还有没有其他的树,树上还有没有其他的鸟?没有有没有残疾的鸟或饿得飞不动的鸟?没有。打鸟的人眼有没有花?保证是十只?没有花,就十只。有没有傻得不怕死的鸟?都怕死。会不会一打死两只?不会。所有的鸟都可以自由活动吗?完全可以。如果您的回答没有骗人,打死的鸟要是挂在是挂在树上没掉下来,那么就剩一只,若果掉下来,就一只不剩。”这就是数学建模。从不同度思考一个问题,想尽所有的可能,正所谓智者千虑,绝无一失,这才是数学建模的高手。然后,老师讲了数学建模能力的培养与提升,让我们感觉到,原来学好数学建模并不是一件简单的事靠的是分析题意的能力、查资料的能力、建立数学模型的能力、问题的转化能力、现学现用的能力、编程能力、论文写作能力等多方面的能力。
数学建模心得体会【2】 数学建模论文也有固定的结构,其中包括摘要、问题重述与分析、问题假设、符号说明、模型建立与求解、模型检验、结果分析、模型的进一步讨论、模型优缺点等一系列的步骤。与此同时数学建摸论文的模块设计也有固定的格式,问题的背景、问题的重述、基本假设与符号说明、问题的分析与模型的准备、模型的建立、模型的求解、模型的检验、模型的灵敏度与稳定性分析、模型的科学性及现实意义、模型的使用说明、模型的进一步讨论与改进、模型评价与推广、写给××的意见、参考文献、附录等。紧接着老师又给我们讲述了数学建模论文的一系列写作技巧,让我获益匪浅。
数学建模中常用算法有很多种,1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法)2、数据拟合\参数估计\插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具)3、线性规划\整数规划\多元规划\二次规划等规划类问题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo软件实现)4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备)5、动态规划\回溯搜索\分治算法\分支定界等计算机算法(这些算
法是算法设计中比较常用的方法,很多场合可以用到竞赛中)
6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用)7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具)
8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的)9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用)10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用Matlab进行处理)
但是数学建模到底是什么样子的,举几个例子:例子一:三个学生住旅馆,服务员收费30元,于是三个学生每人交了10元。后来老板对服务员说当天特价,只用收25元,要服务员
把多的5元退给三人。爱贪小便宜的服务员想:“5元给三个人也不好分,自己留下2元,给他们一人一元正好。”于是,服务员退还了学生3元并私吞了2元。现在的结果是:每个学生只出了9元,一共27元,加上服务员的2元,才29元。剩下的1元钱哪里去了?我们先从最易理解的角度考虑,三位顾客付了30英镑,其中25英镑是餐费,3英镑是头,2英镑是小费。于是„„这个等式完全成立,并且不存在丢失钱的问题。但这种分析却不能打消困惑者的疑惑。27-2=25.这是个有意义的加法公式,27+2=29,纯属不三不四的胡扯,用来混淆视听,迷惑人。只是由于结果及其接近30,从而使人相信这两个数字是有着紧密连续的,实际上这个式子没有任何意义。
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。
发表评论