1.基本计数原理
⑴加法原理
分类计数原理:做一件事,完成它有类办法,在第一类办法中有种不同的方法,在第二类办法中有种方法,……,在第类办法中有种不同的方法.那么完成这件事共有种不同的方法.又称加法原理.
⑵乘法原理
分步计数原理:做一件事,完成它需要分成个子步骤,做第一个步骤有种不同的方法,做第二个步骤有种不同方法,……,做第个步骤有种不同的方法.那么完成这件事共有种不同的方法.又称乘法原理.
⑶加法原理与乘法原理的综合运用
如果完成一件事的各种方法是相互独立的,那么计算完成这件事的方法数时,使用分类计数原理.如果完成一件事的各个步骤是相互联系的,即各个步骤都必须完成,这件事才告完成,那么计算完成这件事的方法数时,使用分步计数原理.
分类计数原理、分步计数原理是推导排列数、组合数公式的理论基础,也是求解排列、组合问题的基本思想方法,这两个原理十分重要必须认真学好,并正确地灵活加以应用.
2. 排列与组合
⑴排列:一般地,从个不同的元素中任取个元素,按照一定的顺序排成一列,叫做从个不同元素中取出个元素的一个排列.(其中被取的对象叫做元素)
排列数:从个不同的元素中取出个元素的所有排列的个数,叫做从个不同元素中取出个元素的排列数,用符号表示.
排列数公式:,,并且.
全排列:一般地,个不同元素全部取出的一个排列,叫做个不同元素的一个全排列.
的阶乘:正整数由到的连乘积,叫作的阶乘,用表示.规定:.
⑵组合:一般地,从个不同元素中,任意取出个元素并成一组,叫做从个元素中任取个元素的一个组合.
组合数:从个不同元素中,任意取出个元素的所有组合的个数,叫做从个不同元素中,任意取出个元素的组合数,用符号表示.
组合数公式:,,并且.
组合数的两个性质:性质1:;性质2:.(规定)
⑶排列组合综合问题
解排列组合问题,首先要用好两个计数原理和排列组合的定义,即首先弄清是分类还是分步,是排列还是组合,同时要掌握一些常见类型的排列组合问题的解法:
1.特殊元素、特殊位置优先法
元素优先法:先考虑有限制条件的元素的要求,再考虑其他元素;
位置优先法:先考虑有限制条件的位置的要求,再考虑其他位置;
2.分类分步法:对于较复杂的排列组合问题,常需要分类讨论或分步计算,一定要做到分类明确,层次清楚,不重不漏.
3.排除法,从总体中排除不符合条件的方法数,这是一种间接解题的方法.
4.捆绑法:某些元素必相邻的排列,可以先将相邻的元素“捆成一个”元素,与其它元素进行排列,然后再给那“一捆元素”内部排列.
5.插空法:某些元素不相邻的排列,可以先排其它元素,再让不相邻的元素插空.
6.插板法:个相同元素,分成组,每组至少一个的分组问题——把个元素排成一排,从个空中选个空,各插一个隔板,有.
7.分组、分配法:分组问题(分成几堆,无序).有等分、不等分、部分等分之别.一般地平均分成堆(组),必须除以!,如果有堆(组)元素个数相等,必须除以!
8.错位法:编号为1至的个小球放入编号为1到的个盒子里,每个盒子放一个小球,要求小球与盒子的编号都不同,这种排列称为错位排列,特别当,3,4,5时的错位数各为1,2,9,44.关于5、6、7个元素的错位排列的计算,可以用剔除法转化为2个、3个、4个元素的错位排列的问题.
1.排列与组合应用题,主要考查有附加条件的应用问题,解决此类问题通常有三种途径:
①元素分析法:以元素为主,应先满足特殊元素的要求,再考虑其他元素;
②位置分析法:以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置;
③间接法:先不考虑附加条件,计算出排列或组合数,再减去不符合要求的排列数或组合数.
求解时应注意先把具体问题转化或归结为排列或组合问题;再通过分析确定运用分类计数
原理还是分步计数原理;然后分析题目条件,避免“选取”时重复和遗漏;最后列出式子计算作答.
2.具体的解题策略有:
数学数组的定义是什么①对特殊元素进行优先安排;
②理解题意后进行合理和准确分类,分类后要验证是否不重不漏;
③对于抽出部分元素进行排列的问题一般是先选后排,以防出现重复;
④对于元素相邻的条件,采取捆绑法;对于元素间隔排列的问题,采取插空法或隔板法;
⑤顺序固定的问题用除法处理;分几排的问题可以转化为直排问题处理;
⑥对于正面考虑太复杂的问题,可以考虑反面.
⑦对于一些排列数与组合数的问题,需要构造模型.
典例分析
排列数组合数的简单计算
【例1】 对于满足的正整数,( )
A. B. C. D.
【例2】 计算______.
【例3】 计算,;
【例4】 计算______,_______.
【例5】 计算,;
【例6】 计算,,,,.
【例7】 已知,求的值.
【例8】 解不等式
【例9】 证明:.
【例10】 解方程.
【例11】 解不等式.
【例12】 解方程:
【例13】 解不等式:.
【例14】 设表示不超过的最大整数(如,),对于给定的,定义,,则当时,函数的值域是( )
A. B.
C. D.
【例15】 组合数恒等于( )
A. B. C. D.
【例16】 已知,求、的值.
排列数组合数公式的应用
【例17】 已知,求的值.
【例18】 若,则_______
【例19】 若,则
【例20】 证明:
【例21】 证明:.
【例22】 求证: .
【例23】 证明:.
【例24】 证明:.
【例25】 求证:;
【例26】 计算:,
【例27】 证明:.(其中)
【例28】 解方程
【例29】 确定函数的单调区间.
【例30】 规定,其中,为正整数,且,这是排列数(是正整数,且)的一种推广.
⑴求的值;
⑵排列数的两个性质:①,②(其中是正整数).是否都能推广到(,是正整数)的情形?若能推广,写出推广的形式并给予证明;若不能,则说明理由.
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。
发表评论