浅谈高中数学新课程中
“立体几何”部分的内容与要求
“立体几何”部分的内容与要求
张劲松
2003年4月教育部正式颁布实施《普通高中数学课程标准(实验)》(以下简称《标准》)。与《标准》配套的《普通高中课程标准实验教科书·数学》于2004年秋季开始在山东、广东、海南、宁夏进行实验,2005年秋季又扩大到江苏,到2006年秋季,福建、浙江、安徽、辽宁、天津加入,共有10省(区、直辖市)使用《普通高中课程标准实验教科书·数学》。
这次高中数学课程改革比较突出的特点是在“构建共同基础,提供发展平台”的前提下,“提供多样课程,适应个性选择”“强调本质”“注意提高学生的数学思维能力”“发展学生的数学应用意识”等等。具体做法是,课程内容分为诸多模块和专题,突出数学教科书的“数学味”,注重从现实情景引入数学知识,用数学处理具体的实际问题等等。实事求是地讲,《标准》设计的理念和思路都是非常好的,作为《标准》最主要的载体——教材在实验过程中,有很多积极的评价。但也存在不少问题,比较突出的是《标准》把“内容与要求”合在一起写。有些内容
不明确,教还是不教,难以把握。本文结合《标准》《普通高中课程标准实验教科书·数学》和实验教师的反映,以“立体几何”部分的内容与要求为例,谈一下粗浅的认识,希望对教学有一定的帮助。
一、“立体几何”部分到底包括哪些内容
“立体几何”是高中数学非常经典的内容,也是非常重要的内容。回顾上个世纪90年代以后开始的近20年的高中数学课程改革,1997年前,“立体几何”部分单独成册《立体几何》,与《代数》(上册)同时开设,在高一两个学期完成,《立体几何》约需57课时。1997年后,《全日制普通高级中学数学教学大纲》把“立体几何”部分的内容缩为一章“直线、平面、简单几何体”,再加上“研究性学习课题:多面体欧拉定理的发现”,共39课时。
翻看《全日制中学数学教学大纲(高中部分)》(修订本)和《全日制普通高级中学数学教学大纲》,其教学内容和具体要求(或教学目标)都是分开表述,学什么,达到什么目标,比较清晰。
《普通高中数学课程标准(实验)》中“立体几何”部分的内容,放在《数学2》“立体几何初
步”,选修2-1“空间向量与立体几何”,以及系列3和系列4的部分专题中,如“选修3-3球面上的几何”中等等,而且必修课程和选修课程分得比较开。由于选修系列1的学生只学习《数学2》中的“立体几何初步”,选修系列2的学生学习“空间向量与立体几何”,所以,我们认为,现在的高中数学新课程中的“立体几何”部分包括《数学2》中的“立体几何初步”和选修2-1中“空间向量与立体几何”,它们共30课时。
1、现在高中数学新课程中“立体几何”部分的教学内容是不是过去“直线、平面、简单几何体”内容的真子集。实际是这种情况吗?答案是否定的。
从《普通高中数学课程标准(实验)》和《普通高中课程标准实验教科书·数学2》(以下简称《数学2》)看,新课程“立体几何”部分新增了一些内容:平行投影、中心投影、三视图。这些内容与义务教育阶段“空间与图形”中的“视图与投影”紧密衔接,而“直线、平面、简单几何体”没有这部分内容。增加这部分内容的主要目的是进一步认识空间图形,通过三视图以及空间几何体与其三视图的互相转化,对空间图形有比较完整的认识,培养和发展学生的几何直观能力和空间想象能力,更全面地把握空间几何体。投影是视图的基础,投影分为平行投影和中心投影。立体几何中研究的图形都是平行投影下的图形。中心投影在日常生活中虽然非常普遍,但不是高中“立体几何”研究的主要内容。有了投影,才有视图。
除了“平行投影、中心投影、三视图”的内容外,其他内容是“直线、平面、简单几何体”的真子集。
2、高中数学新课程中“立体几何”部分的教学内容
结合《标准》的学习和教科书的编写,概括一下,高中数学新课程中“立体几何”部分的数学内容:
(1)空间几何体
棱柱、棱锥、棱台、圆柱、圆锥、圆台、球。
柱体、锥体、台体、球体的简单组合体。
简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,斜二侧画法,简单空间图形的直观图。
平行投影下的空间图形,中心投影下的空间图形。
球、棱柱、棱锥、棱台、圆柱、圆锥、圆台的表面积和体积。
(2)点、直线、平面之间的位置关系
平面及其基本性质。
平行直线,对应边分别平行的角,异面直线所成的角。
直线和平面平行的判定与性质,直线和平面垂直的判定与性质,点到平面的距离,斜线在平面的投影,直线和平面所成的角。
平面与平面平行的判定与性质。
二面角及其平面角。
两个平面垂直的判定与性质。
(3)空间向量与立体几何
空间向量及其加法、减法与数乘运算。
空间向量基本定理,空间向量的正交分解。
空间向量的坐标表示,空间向量的加法、减法与数乘运算的坐标表示。
空间向量的数量积,空间向量数量积的坐标表示。
三垂线定理及其逆定理。
直线的方向向量,平面的法向量。
3、关于夹角与距离
《标准》在“空间向量与立体几何”中明确提出:“能用向量方法解决线线、线面、面面的夹角的计算问题,体会向量方法在研究几何问题中的作用。”因此,异面直线所成的角、直线与平面所成的角、平面与平面所成的角等内容在“点、直线、平面之间的位置关系”必须介绍,穿插在相关内容之中,尽管在“点、直线、平面之间的位置关系”中没有提到。
距离是“立体几何”中的另一种度量。点到直线的距离、点到平面的距离、平行直线之间的距离、异面直线之间的距离、直线与平面之间的距离、平面与平面之间的距离的本质是两点之间的距离,而两点之间的距离是以这两点为起点和终点的向量的模或长度。这样,空间中的距离问题就转化为向量的模或长度问题。
4、关于“三垂线定理及其逆定理”
很多老师都说,整个高中立体几何就是“三垂线定理”。尽管说得过分些,但从另外一个角度说明,“三垂线定理”在整个高中“立体几何”中的地位和作用。确实,“三垂线定理”是整个立体几何内容的一个典型代表,处在整个立体几何知识的枢纽位置,综合了很多知识内容:直线与直线、直线与平面、平面与平面的垂直和平行。《标准》在“点、直线、平面之间的位置关系”中虽然没有明确提到“三垂线定理”,但在“空间向量与立体几何”中提到“能用向量方法证明有关线、面位置关系的一些定理(包括三垂线定理)”。按照这种提法,教材中必须明确提出“三垂线定理”,学生应该知道这个定理。至于放在《数学2》中,还是放在《选修2-1》中,则是另外一个问题。有了“三垂线定理”,“三垂线定理的逆定理”也就顺理成章了,无非是斜线与斜线在平面内的射影的位置互换了一下。视图包括哪几个视图
在教材实验过程中,老师非常关注“三垂线定理及其逆定理”的教学。一方面是它在整个高中“立体几何”中的地位和作用;另一方面,它也是高考的核心内容,目前的高考试卷中,如果是用综合法处理的“立体几何”方面的大题,都是关于“三垂线定理及其逆定理”的。但是,随着空间向量及其运算引入“立体几何”内容中,用空间向量及其运算的向量方法(或坐标方
法)处理有关垂直和平行问题成为一种普遍适用的方法,用“三垂线定理及其逆定理”的综合方法退居其次。高中数学新课程中强调用空间向量及其运算处理立体几何中的角度、距离,淡化综合方法处理角度问题和距离问题。
5、关于球
目前,《标准》只要求认识球的结构特征,了解球的表面积和体积的计算公式(不要求记忆)。由于在系列3中的“选修3-3球面上的几何”专门讲述涉及球以及球面的几何,因此现在新课程中“立体几何”部分不涉及球面上距离等内容,对球面的表面积和体积公式也不要求推导,教学时一定不要增加这方面的内容。
二、怎样把握这部分的教学要求
由于《标准》把“内容与要求”合在一起写,对教学要求的把握相对来说,容易一些。但在教材编写和教材实验中,也存在不少问题。
1、棱柱、棱锥、棱台这些空间几何体要求到什么程度
按照《标准》的要求,教材首先通过实物模型、计算机软件观察大量空间图形,认识柱、锥、台、球及其简单组合体的结构特征。结构特征是这些空间几何体的本质特征,我们需要抽象概括出这些空间几何体的概念。以棱柱为例,抽象出它的本质特征后,要不要讲斜棱柱、直棱柱、正棱柱以及楞住的一些性质?由于《标准》在“空间向量与立体几何”的“参考案例”例1中明确提出“直三棱柱……”,所以必须讲。至于放到哪部分内容中,下面我们谈到体系结构时,会详细阐述。棱锥也有类似的问题,正棱锥怎么讲?在何处讲?
2、关于三视图与几何直观能力、空间想象能力
视图和投影是《全日制义务教育数学课程标准(实验稿)》新增的内容,作为与初中数学课程内容的衔接,“空间几何体”包括视图和投影的内容。要求到什么程度?
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。
发表评论