目前看起来还是来自职位描述,至于什么叫数据产品,大约业界还没有定论。
姑且引用老读悟的定义:
数据产品是可以发挥数据价值去辅助用户更优的做决策(甚至行动)的一种产品形式。它在用户的决策和行动过程中,可以充当信息的分析展示者和价值的使能者。从这个角度讲,搜索引擎、个性化推荐引擎显然也是数据产品。狭义范畴的数据产品,比如大家熟知的淘宝数据魔方、百度指数、电商的CRM平台、各种公司内部的数据决策支持系统等都是数据产品。
搜索引擎、推荐引擎代表了当今数据挖掘领域最成功的商业案例,而魔方、指数、CRM等产品也是数据分析和决策的典型应用,因此老读悟的这个定义我还是相当认同的,或者更简单的说,凡是以数据价值驱动为核心的产品形式都是数据产品,说得更艺术一点, the art of turning data into product 。
方法论
这里主要探讨一下,如何设计或者评价数据产品?也就是方法论的问题。说到数据产品,不能不提一下数据分析和数据挖掘。常碰到某牛人对着报表鄙视的说这叫数据分析,根本算不上数据挖掘,但是在我的理解里,数据分析其实也是数据挖掘,只是一种浅层次但是非常简洁有效的数据挖掘形式而已,因此后文不再使用数据分析这个词,而是围绕数据挖掘来思考数据产品的本质。
《Data Mining Techniques》这本书里对数据挖掘的定义是:数据挖掘是一项探测大量数据以发现有意义的模式和规则的业务流程。“发现有意义的模式和规则”也就是我理解的价值驱动与业务目标,进一步的这些任务又可归纳为分类和预测、评估、关联规则、聚类、孤立点等,而为了解决上述任务所需要的方式方法则包括各种统计学模型、决策树、聚类算法、人工智能等等数学和计算机
技术。
数据挖掘的方法论有很多种定义,有DMAIC模型,CRISP-DM模型,SEMMA模型等等,虽然细节不一,但是大体流程并无差异。我个人比较喜欢简洁的DMAIC模型,一个是因为Kaushik的经
典《Web Analytics2.0》里遵循的思想便是这个,更重要的是它引入了循环控制的理念,而不是简单的线性流程。DMAIC模型包括:
1. Define定义需求,即把业务问题转化为数据挖掘问题
2. Measure 测量数据,即理解、收集并加工数据,做好准备
3. Analyze 分析建模,即构建模型、评估模型的过程
4. Improve 解决问题,即部署模型来解决目标问题
5. Control反馈控制,即评估结果重新开始循环,不断改进
DMAIC模型
基于数据挖掘的方法论,回头来理清产品设计的方法论。通常对于互联网产品设计,比较一致的观点
是《用户体验要素》里面的五层模型,战略层→范围层→结构层→框架层→表现层。我相信对于产品经理来说五层模型属于入门,但是对于不同类型的产品必然有不同的解读,比如SNS产品和电商产品的五层模型关注的问题肯定有差异,因此这里还是以淘宝魔方为例赘述一遍自己对于数据产品的五层模型理解。
1. 战略层,用户需求和产品目标,比如淘宝魔方的目标用户是品牌卖家,那么它到底帮助品牌卖家用户解决什么问题?对于DMAIC来说,相当于解决Define的问题,即数据要实现什么价值。
2. 范围层,功能规格和内容需要,比如淘宝魔方有哪些功能,这些功能有哪些指标,每个指标反应哪些问题?对于DMAIC来说,相当于解决Measure和Analyze的问题,即价值表现为哪些数据指标,这些指标的来龙去脉如何。
3. 结构层,交互设计和产品架构,比如淘宝魔方的各种指标怎么分类组织,不同维度的相互关系
如何?
4. 框架层,界面设计和导航设计,比如流失顾客指标是使用图还是用表格?使用什么类型的图?数据筛选器和图表怎么布局?
5. 表现层,视觉设计,比如子行业趋势图使用什么颜分类?宝贝列表是否显示图片?上述三层,对于
DMAIC来说,相当于解决Improve的问题,即数据以什么样的形式来展现其价值。
具体的产品设计过程中不断运用上述模型进行思考迭代,最终才成型完整的产品。对于DMAIC来说,这就是Control的内涵。
网站流量统计分析工具
可以看到,数据挖掘和产品设计在方法论上是具有内在统一的,这就是我所理解的数据产品设计的方法论。
数据产品设计模型
具体来说,任何一款数据产品需要先思考这个产品的目标用户是谁,帮它解决什么问题,给它带来什么价值,也就是确定产品的业务目标。继续思考,为了实现业务目标,需要哪些数据指标?这些数据指标是怎么来的?这些指标如何反应解决问题的思路?当我们确定了数据指标后,从技术的角度讲就是数学建模的问题了,从产品的角度讲需要明确第三个环节,就是这些指标以怎么样的形式
展示?如何更好的发挥它的价值?这就从抽象概念进化到具体的产品形式。数据产品的设计过程也就是基于上述三点进行不断的循环迭代的过程。
1. 业务目标
就数据产品来说,其主要价值应该是决策或者辅助决策,这就意味着数据产品往往和业务及运营密不可分。因此评价数据产品设计的原点是产品能否满足业务运营的关键需求,不论是理解、预测还是决策。不同业务的关键需求显然是不一样的,数据产品的目标用户和目标价值也必然存在差异,
这就要求数据产品的设计去深入理解业务本身,游戏产品经理最好是一个资深玩家,同样,完美的数据产品经理即使不是一个业务专家,至少也是需要能够站在业务专家角度思考问题。
数据产品并不是千篇一律的图形报表,从业务目标出发我们可以很轻易的到数据产品的灵魂。搜索
时代的网站是以广告为核心盈利模式的,因此无数站长才会为点击流竞折腰,如何分析提升流量是网站运营的关键需求,因此以google Analytics为代表的流量分析工具横空出世。电商网站本质是商品交易,其运营依然沿袭了传统零售业的玩法,比如活动营销,关联销售,会员提升,那么如何促进交易这个核心需求是不变的,所以有了量子恒道面向销售和客户分析的店铺经,有了辅助高级別卖家进行战略分析的淘宝数据魔方。
博客及SNS类产品又是一番情景,其运营核心变成了内容产生量和粉丝数,简单的流量分析不得不改弦易辙。游戏是强运营的产品,其核心是如何留住玩家如何提升道具购买,因此可以想象游戏类数据产品必然需要面向玩家的生命周期管理和道具交易。当进入移动互联网时代,为了适应新的设计和交互变革,为了解决渠道推广难题,我们可爱的数据产品又将多屏多系统分析、渠道分析发挥得淋漓尽致。而当智能硬件、可穿戴设备、物联网各种概念喧嚣时,如何从愈加广泛的数据中寻产品的核心价值则成为了所有人共同的思考。
数据产品设计的业务目标决定了产品的方向,不能抓住业务问题的数据产品不是好的设计,而基本上可以想象当明确你要解决的业务问题越难时,产品目标用户的兴趣就越大,再接着才会觉得产品的价值越大。
2. 数据指标
当数据产品的业务目标确定以后,我们似乎就要开始数据挖掘游戏了!这个游戏的核心是将业务问题转化为数学问题,这些问题往往分为两类,一类是为了反应业务情况,我需要哪些数据指标,比如流量还是交易量;第二类是为了解决业务问题我需要使用哪些数学模型或算法,这些模型或者算法的解需要哪些数据指标来表达,比如商品关联推荐。当业务问题转化为数学问题以后,基本上就是数据分析员或者技术工程师们的舞台了,他们将一起来面对诸如选择合适数据、如何认识数据、创建模型集,构建模型,评估模型等等各种细节上的挑战。

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。