第二章  基本初等函数(Ⅰ)
郭慧清
指数函数、对数函数和幂函数是三类重要且常用的基本初等函数,是进一步学习数学的基础。本章中,学生将在第一章学习函数概念的基础上,通过三个具体的基本初等函数的学习,进一步理解函数的概念与性质,学习用函数模型研究和解决一些实际问题的方法。
一、内容和课程学习目标
本章主要学习指数函数、对数函数、幂函数等基本初等函数的概念和性质。通过本章学习,应使学生达到以下的学习目标:
(1)了解指数函数模型的实际背景。
反函数计算器
(2)理解有理指数幂的含义,通过具体实例了解实数指数幂的意义,掌握幂的运算。
(3)理解指数函数的概念和意义,能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的单调性与特殊点。
(4)在解决简单实际问题的过程中,体会指数函数是一类重要的函数模型。
(5)理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;通过阅读材料,了解对数的发现历史以及对简化运算的作用。
(6)通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点。
(7)知道指数函数y=ax 与对数函数y=loga x互为反函数(a > 0, a≠1)。
(8)通过实例,了解幂函数的概念;结合函数y=x, y=x2, y=x3, y=1/x, y=x1/2 的图象,了解它们的变化情况。
二、内容安排
全章分为三节,教学时间约需15课时,具体分配如下(仅供参考):
    2.1 指数函数                                  约6课时
    2.2 对数函数                              约6课时
    2.3 幂函数                                  约1课时
小结                                          约2课时
一、
本章知识结构如下:
1.学生在初中学习了数的开平方、开立方以及二次根式的概念,又学习了正整数指数幂、零指数幂、负整数指数幂,学习了整数指数幂的运算法则.有了这些知识作准备,教科书通过实际问题引出了分数指数幂,说明了扩张指数取值范围的必要性,由此先将平方根与立方根的概念扩充到n次方根,将二次根式的概念扩充到一般根式的概念,然后进一步探究
了分数指数幂及其运算性质,最后通过有理指数幂逼近无理指数幂,通过一个实例介绍了无理指数幂的概念,将指数的范围扩充到了实数。
指数函数是高中新引进的第一个基本初等函数,因此,教科书先给出了指数函数的实际背景,然后对指数函数概念的建立、指数函数图象的绘制、指数函数的基本性质的发现与指数函数的初步应用,作了完整的介绍。指数函数是本章的重点内容之一.
教科书从具体问题引进对数概念。从对数概念的建立过程可以看出,教科书是从指数运算与对数运算的互逆关系来建立对数概念的(这与历史上对数的发明先于指数不同),这为学生学习时发现与论证对数的运算性质提供了方便。与传统教科书另一个较明显的区别是,这里加强了对数的实际应用与数学文化背景。
对数函数同指数函数一样,是以对数概念和运算法则作为基础讲授的.对数函数的研究过程也同指数函数的研究过程一样,目的是让学生对建立和研究一个具体的函数的方法有较完整的认识。在学习了指数函数与对数函数后,以两个底数相同的指数函数与对数函数介绍了反函数的概念。对一般的反函数概念,教科书根据《普通高中数学课程标准》的要求没有作更多的介绍,这也是与传统教科书有区别的另一个地方。

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。