三角公式总表
L弧长=R= S扇=LR=R2=
正弦定理: === 2R(R为三角形外接圆半径)
余弦定理:a=b+c-2bc b=a+c-2ac c=a+b-2ab
S⊿=a=ab=bc=ac==2R
====pr=
(其中, r为三角形内切圆半径)
同角关系:
商的关系: ===
倒数关系:
平方关系:
(其中辅助角与点(a,b)在同一象限,且)
函数y=k的图象及性质:()
振幅A,周期T=, 频率f=, 相位,初相
五点作图法:令依次为求出x与y, 依点作图
诱导公试
sin | cos | tg | ctg | |
- | - | + | - | - |
- | + | - | - | - |
+ | - | - | + | + |
2- | - | + | - | - |
2k+ | + | + | + | + |
三角函数值等于的同名三角函数值,前面加上一个把看作锐角时,原三角函数值的符号;即:函数名不变,符号看象限
sin | con | tg | ctg | |
+ | + | + | + | |
+ | - | - | - | |
- | - | + | + | |
- | + | - | - | |
三角函数值等于的异名三角函数值,前面加上一个把看作锐角时,原三角函数值的符号;即:函数名改变,符号看象限和差角公式
其中当A+B+C=π时,有:
). ).
二倍角公式:(含万能公式)
三倍角公式:
半角公式:(符号的选择由所在的象限确定)
积化和差公式:
和差化积公式:
反三角函数:
名称 | 函数式 | 定义域 | 值域 | 性质 |
反正弦函数 | 增 | 奇 | ||
反余弦函数 | 减 | |||
反正切函数 | R 增 | 奇 | ||
反余切函数 | R 减 | |||
最简单的三角方程
反三角函数的所有公式方程 | 方程的解集 | |
等差数列求和公式的四个层次
等差数列前n项和公式,是数列部分最重要公式之一,学习公式并灵活运用公式可分如下四个层次:
1.直接套用公式
从公式中,我们可以看到公式中出现了五个量,包括这些量中已知三个就可以求另外两个了.从基本量的观点认识公式、理解公式、掌握公式这是最低层次要求.
例1 设等差数列的公差为d,如果它的前n项和,那么( ).(1992年三南高考试题)
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。
发表评论