高中数学第四章-三角函数
1.与(0°≤<360°)终边相同的角的集合(角与角的终边重合):
终边在x轴上的角的集合:
终边在y轴上的角的集合:
终边在坐标轴上的角的集合:
终边在y=x轴上的角的集合:
终边在轴上的角的集合:
若角与角的终边关于x轴对称,则角与角的关系:
若角与角的终边关于y轴对称,则角与角的关系:
若角与角的终边在一条直线上,则角与角的关系:
角与角的终边互相垂直,则角与角的关系:
2. 角度与弧度的互换关系:360°=2 180°= 1°=0.01745 1=57.30°=57°18′
注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零.
、弧度与角度互换公式: 1rad=°≈57.30°=57°18ˊ. 1°=≈0.01745(反三角函数的所有公式rad)
3、弧长公式:. 扇形面积公式:
4、三角函数:设是一个任意角,在的终边上任取(异于原点的)一点P(x,y)P与原点的距离为r,则 ; ; ; ; ;..
5、三角函数在各象限的符号:(一全二正弦,三切四余弦)
6、三角函数线
正弦线:MP; 余弦线:OM; 正切线: AT.
7. 三角函数的定义域:
三角函数 | 定义域 |
sinx | |
cosx | |
tanx | |
cotx | |
secx | |
cscx | |
8、同角三角函数的基本关系式:
9、诱导公式:
“奇变偶不变,符号看象限”
三角函数的公式:(一)基本关系
公式组二 公式组三
公式组四 公式组五 公式组六
(二)角与角之间的互换
公式组一 公式组二
公式组三 公式组四 公式组五
, , ,.
10. 正弦、余弦、正切、余切函数的图象的性质:
(A、>0) | |||||
定义域 | R | R | R | ||
值域 | R | R | |||
周期性 | |||||
奇偶性 | 奇函数 | 偶函数 | 奇函数 | 奇函数 | 当非奇非偶 当奇函数 |
单调性 | 上为增函数;上为减函数() | ;上为增函数 上为减函数 () | 上为增函数() | 上为减函数() | 上为增函数; 上为减函数() |
注意: 与的单调性正好相反;与的单调性也同样相反.一般地,若在上递增(减),则在上递减(增).
与的周期是.
或()的周期.
的周期为2(,如图,翻折无效).
的对称轴方程是(),对称中心();的对称轴方程是(),对称中心();的对称中心().
当·;·.
与是同一函数,而是偶函数,则
.
函数在上为增函数.(×) [只能在某个单调区间单调递增. 若在整个定义域,为增函数,同样也是错误的].
定义域关于原点对称是具有奇偶性的必要不充分条件.(奇偶性的两个条件:一是定义域关于原点对称(奇偶都要),二是满足奇偶性条件,偶函数:,奇函数:)
奇偶性的单调性:奇同偶反. 例如:是奇函数,是非奇非偶.(定义域不关于原点对称)
奇函数特有性质:若的定义域,则一定有.(的定义域,则无此性质)
不是周期函数;为周期函数();
是周期函数(如图);为周期函数();
的周期为(如图),并非所有周期函数都有最小正周期,例如:
.
有.
11、三角函数图象的作法:
1)、几何法:
2)、描点法及其特例——五点作图法(正、余弦曲线),三点二线作图法(正、余切曲线).
3)、利用图象变换作三角函数图象.
三角函数的图象变换有振幅变换、周期变换和相位变换等.
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。
发表评论