一.幂 函 数
一、幂函数定义:形如的函数称为幂函数,其中是自变量,是常数。
注意:幂函数与指数函数有何不同?
【思考·提示】 本质区别在于自变量的位置不同,幂函数的自变量在底数位置,而指数函数的自变量在指数位置.
观察图:
归纳:幂函数图像在第一象限的分布情况如下:
二、幂函数的性质
归纳:幂函数在第一象限的性质:
,图像过定点(0,0)(1,1),在区间()上单调递增。
,图像过定点(1,1),在区间()上单调递减。
探究:整数m,n的奇偶与幂函数的定义域以及奇偶性有什么关系?
结果:形如的幂函数的奇偶性
(1)当m,n都为奇数时,f(x)为奇函数,图象关于原点对称;
(2)当m为奇数n为偶数时,f(x)为偶函数,图象关于y轴对称;
(3)当m为偶数n为奇数时,f(x)是非奇非偶函数,图象只在第一象限内.
三、幂函数的图像画法:
关键先画第一象限,然后根据奇偶性和定义域画其它象限。
指数大于1,在第一象限为抛物线型(凹);
指数等于1,在第一象限为上升的射线;
指数大于0小于1,在第一象限为抛物线型(凸);
指数等于0,在第一象限为水平的射线;
指数小于0,在第一象限为双曲线型;
四、规律方法总结:
1、幂函数的图像:
2、幂函数的图像:
3、比较幂形式的两个数的大小,一般的思路是:
(1)若能化为同指数,则用幂函数的单调性;
(2)若能化为同底数,则用指数函数的单调性;
(3)若既不能化为同指数,也不能化为同底数,则需寻一个恰当的数作为桥梁来比较大小.
二.指数与指数幂的运算
1.根式的概念:一般地,如果,那么叫做的次方根,其中>1,且∈*.
负数没有偶次方根;0的任何次方根都是0,记作。
当是奇数时,,当是偶数时,
2.分数指数幂
正数的分数指数幂的意义,规定:
0的正分数指数幂等于0,0的负分数指数幂没有意义
3.实数指数幂的运算性质
(1)· ;
(2) ;
(3) .
(二)指数函数及其性质
1、指数函数的概念:一般地,函数叫做指数函数,其中x是自变量,函数的定义域为R.
注意:指数函数的底数的取值范围,底数不能是负数、零和1.
2、指数函数的图象和性质
a>1 | 0<a<1 |
定义域 R | 定义域 R |
值域y>0 | 值域y>0 |
在R上单调递增 | 在R上单调递减 |
非奇非偶函数 | 非奇非偶函数 |
函数图象都过定点(0,1) | 函数图象都过定点(0,1) |
注意:利用函数的单调性,结合图象还可以看出:
(1)在[a,b]上,值域是或;
(2)若,则;取遍所有正数当且仅当;
(3)对于指数函数,总有;
三、对数函数反三角函数的所有公式
(一)对数
1.对数的概念:一般地,如果,那么数叫做以为底的对数,记作:(— 底数,— 真数,— 对数式)
说明: 注意底数的限制,且;
;
注意对数的书写格式.
两个重要对数:
常用对数:以10为底的对数;
自然对数:以无理数为底的对数的对数.
指数式与对数式的互化
幂值 真数
= N= b
底数
指数 对数
(二)对数的运算性质
如果,且,,,那么:
·+;
-;
.
注意:换底公式
(,且;,且;).
利用换底公式推导下面的结论
(1);(2).
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。
发表评论