推导公式:(a+b+c)/(sinA+sinB+sinC)=2R(其中,R为外接圆半径)
  由正弦定理有
  a/sinA=b/sinB=c/sinC=2R
  所以
  a=2R*sinA
  b=2R*sinB
  c=2R*sinC
  加起来a+b+c=2R*(sinA+sinB+sinC)带入
  (a+b+c)/(sinA+sinB+sinC)=2R*(sinA+sinB+sinC)/(sinA+sinB+sinC)=2R
sec cot csc 表示什么两角和公式
  sin(A+B)=sinAcosB+cosAsinB
  sin(A-B)=sinAcosB-cosAsinB
  cos(A+B)=cosAcosB-sinAsinB
  cos(A-B)=cosAcosB+sinAsinB
  tan(A+B)=(tanA+tanB)/(1-tanAtanB)
  tan(A-B)=(tanA-tanB)/(1+tanAtanB)
  cot(A+B)=(cotAcotB-1)/(cotB+cotA)
  cot(A-B)=(cotAcotB+1)/(cotB-cotA)
  倍角公式
  Sin2A=2SinA?CosA
对数的性质及推导
  用^表示乘方,用log(a)(b)表示以a为底,b的对数
  *表示乘号,/表示除号
  定义式:
  若a^n=b(a>0a1)
  则n=log(a)(b)
  基本性质:
  1.a^(log(a)(b))=b
  2.log(a)(MN)=log(a)(M)+log(a)(N);
  3.log(a)(M/N)=log(a)(M)-log(a)(N);
  4.log(a)(M^n)=nlog(a)(M)
  推导
  1.这个就不用推了吧,直接由定义式可得(把定义式中的[n=log(a)(b)]带入a^n=b)
  2.
  MN=M*N
  由基本性质1(换掉MN)
  a^[log(a)(MN)]=a^[log(a)(M)]*a^[log(a)(N)]
  由指数的性质
  a^[log(a)(MN)]=a^{[log(a)(M)]+[log(a)(N)]}
  又因为指数函数是单调函数,所以
  log(a)(MN)=log(a)(M)+log(a)(N)
  3.2类似处理
  MN=M/N
  由基本性质1(换掉MN)
  a^[log(a)(M/N)]=a^[log(a)(M)]/a^[log(a)(N)]
  由指数的性质
  a^[log(a)(M/N)]=a^{[log(a)(M)]-[log(a)(N)]}
  又因为指数函数是单调函数,所以
  log(a)(M/N)=log(a)(M)-log(a)(N)
  4.2类似处理
  M^n=M^n
  由基本性质1(换掉M)
  a^[log(a)(M^n)]={a^[log(a)(M)]}^n
  由指数的性质
  a^[log(a)(M^n)]=a^{[log(a)(M)]*n}
  又因为指数函数是单调函数,所以
  log(a)(M^n)=nlog(a)(M)
  其他性质:
  性质一:换底公式
  log(a)(N)=log(b)(N)/log(b)(a)
  推导如下
  N=a^[log(a)(N)]
  a=b^[log(b)(a)]
  综合两式可得
  N={b^[log(b)(a)]}^[log(a)(N)]=b^{[log(a)(N)]*[log(b)(a)]}
  又因为N=b^[log(b)(N)]
  所以
  b^[log(b)(N)]=b^{[log(a)(N)]*[log(b)(a)]}
  所以
  log(b)(N)=[log(a)(N)]*[log(b)(a)]{这步不明白或有疑问看上面的}
  所以log(a)(N)=log(b)(N)/log(b)(a)
  性质二:(不知道什么名字)
  log(a^n)(b^m)=m/n*[log(a)(b)]
  推导如下
  由换底公式[lnxlog(e)(x),e称作自然对数的底]

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。