六种三角函数性质、公式
三角函数包括。它包含六种基本函数:正弦余弦正切余切正割余割
      .反三角函数:
         
arcsinx                       arccosx
         
arctanx                      arccotx
函数
y=sinx
y=cosx
y=tanx
y=cotx
定义域
R
R
{x|x∈R且x≠kπ+,k∈Z}
{x|x∈R且x≠kπ,k∈Z}
值域
[-1,1]x=2kπ+ 时ymax=1
x=2kπ- 时ymin=-1
[-1,1]
x=2kπ时ymax=1
x=2kπ+π时ymin=-1
R
无最大值
无最小值
R
无最大值
无最小值
周期性
周期为2π
周期为2π
周期为π
周期为π
奇偶性
奇函数
偶函数
奇函数
奇函数
单调性
在[2kπ-,2kπ+ ]上都是增函数;在[2kπ+ ,2kπ+π]上都是减函数(k∈Z)
在[2kπ-π,2kπ]上都是增函数;在[2kπ,2kπ+π]上都是减函数(k∈Z)
在(kπ-,kπ+)内都是增函数(k∈Z)
在(kπ,kπ+π)内都是减函数(k∈Z)
名称
反正弦函数
反余弦函数
反正切函数
反余切函数
定义
y=sinx(x∈〔-, 〕的反函数,叫做反正弦函数,记作x=arsiny
y=cosx(x∈〔0,π〕)的反函数,叫做反余弦函数,记作x=arccosy
y=tanx(x∈(- , )的反函数,叫做反正切函数,记作x=arctany
y=cotx(x∈(0,π))的反函数,叫做反余切函数,记作x=arccoty
理解
arcsinx表示属于[-,
且正弦值等于x的角
arccosx表示属于[0,π],且余弦值等于x的角
arctanx表示属于(-,),且正切值等于x的角
arccotx表示属于(0,π)且余切值等于x的角
性质
定义域
[-1,1]
[-1,1]
(-∞,+∞)
(-∞,+∞)
值域
[-
[0,π]
(-)
(0,π)
单调性
在〔-1,1〕上是增函数
在[-1,1]上是减函数
在(-∞,+∞)上是增数
在(-∞,+∞)上是减函数
奇偶性
arcsin(-x)=-arcsinx
arccos(-x)=π-arccosx
arctan(-x)=-arctanx
arccot(-x)=π-arccotx
周期性
都不是同期函数
恒等式
sin(arcsinx)=x(x∈[-1,1])arcsin(sinx)=x(x∈[-,])
cos(arccosx)=x(x∈[-1,1]) arccos(cosx)=x(x∈[0,π])
tan(arctanx)=x(x∈R)arctan(tanx)=x(x∈(-,))
cot(arccotx)=x(x∈R)
arccot(cotx)=x(x∈(0,π))
互余恒等式
arcsinx+arccosx=(x∈[-1,1])
arctanx+arccotx=(X∈R)
y=secx的性质
  (1)定义域,{x|x≠π/2+kπ,kZ}
  (2)值域,|secx|≥1.即secx≥1或secx≤-1;
  (3)y=secx是偶函数,即sec(-x)=secx.图像对称于y轴;
(4)y=secx是周期函数.周期为2kπ(kZ,且k≠0),最小正周期T=2π.
 (5)正割与余弦互为倒数;余割与正弦互为倒数;
 (6)正割函数无限趋于直线x=π/2+Kπ;
  (7) 正割函数是无界函数;
 (8)正割函数的导数:(secx)′=secx×tarx;
(9正割函数的不定积分:∫secxdx=lnsecx+tanx+C
y=cscx的性
1、定义域:{x|x≠kπ,k∈Z}
  2、值域:{y|y≤-1或y≥1}
  3、奇偶性:奇函数
  4、周期性:最小正周期为2π
  5、图像:
图像渐近线为:x=kπ ,k∈Z 余割函数与正弦函数互为倒数  第一部分 三角函数公式
·两角和与差的三角函数
cos(α+β)=cosα·cosβ-sinα·sinβ
cos(α-β)=cosα·cosβ+sinα·sinβ
sin(α±β)=sinα·cosβ±cosα·sinβ
tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)
tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)
·和差化积[/url]公式:
sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]
sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]
cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]
cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]
·积化和差[/url]公式:
sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]
cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]
cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]
sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]
·倍角公式[/url]:
sin(2α)=2sinα·cosα=2/(tanα+cotα)
cos(2α)=(cosα)^2-(sinα)^2=2(cosα)^2-1=1-2(sinα)^2
tan(2α)=2tanα/(1-tan^2α)
cot(2α)=(cot^2α-1)/(2cotα)
sec(2α)=sec^2α/(1-tan^2α)
csc(2α)=1/2*secα·cscα
·三倍角公式:
sin(3α) = 3sinα-4sin^3α = 4sinα·sin(60°+α)sin(60°-α)
cos(3α) = 4cos^3α-3cosα = 4cosα·cos(60°+α)cos(60°-α)
tan(3α) = (3tanα-tan^3α)/(1-3tan^2α) = tanαtan(π/3+α)tan(π/3-α)
cot(3α)=(cot^3α-3cotα)/(3cot^2α-1)
·n倍角公式:
sin(nα)=ncos^(n-1)α·sinα-C(n,3)cos^(n-3)α·sin^3α+C(n,5)cos^(n-5)α·sin^5α-…
cos(nα)=cos^nα-C(n,2)cos^(n-2)α·sin^2α+C(n,4)cos^(n-4)α·sin^4α-…
·半角公式[/url]:
sin(α/2)=±√((1-cosα)/2)
cos(α/2)=±√((1+cosα)/2)
tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα
cot(α/2)=±√((1+cosα)/(1-cosα))=(1+cosα)/sinα=sinα/(1-cosα)
sec(α/2)=±√((2secα/(secα+1))
csc(α/2)=±√((2secα/(secα-1))
·辅助角公式:
Asinα+Bcosα=√(A^2+B^2)sin(α+φ)(tanφ=B/A)
Asinα+Bcosα=√(A^2+B^2)cos(α-φ)(tanφ=A/B)
·万能公式
sin(a)= (2tan(a/2))/(1+tan^2(a/2))
cos(a)= (1-tan^2(a/2))/(1+tan^2(a/2))
tan(a)= (2tan(a/2))/(1-tan^2(a/2))
·降幂公式
sin^2α=(1-cos(2α))/2=versin(2α)/2
cos^2α=(1+cos(2α))/2=covers(2α)/2
tan^2α=(1-cos(2α))/(1+cos(2α))
·三角和的三角函数:
sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ
cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ
tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)
·其它公式
·两角和与差的三角函数
cos(α+β)=cosα·cosβ-sinα·sinβ
cos(α-β)=cosα·cosβ+sinα·sinβ
sin(α±β)=sinα·cosβ±cosα·sinβ
tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)
tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)
=sinα/(1-cosα) ·和差化积[/url]公式:
sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]
sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]
cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]
cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]
·积化和差[/url]公式:
sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]
cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]
所有反三角函数图像cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]
sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]
·倍角公式[/url]:
sin(2α)=2sinα·cosα=2/(tanα+cotα)
cos(2α)=(cosα)^2-(sinα)^2=2(cosα)^2-1=1-2(sinα)^2
tan(2α)=2tanα/(1-tan^2α)
cot(2α)=(cot^2α-1)/(2cotα)
sec(2α)=sec^2α/(1-tan^2α)
csc(2α)=1/2*secα·cscα
·三倍角公式:
sin(3α) = 3sinα-4sin^3α = 4sinα·sin(60°+α)sin(60°-α)
cos(3α) = 4cos^3α-3cosα = 4cosα·cos(60°+α)cos(60°-α)
tan(3α) = (3tanα-tan^3α)/(1-3tan^2α) = tanαtan(π/3+α)tan(π/3-α)
cot(3α)=(cot^3α-3cotα)/(3cot^2α-1)
·n倍角公式:
sin(nα)=ncos^(n-1)α·sinα-C(n,3)cos^(n-3)α·sin^3α+C(n,5)cos^(n-5)α·sin^5α-…
cos(nα)=cos^nα-C(n,2)cos^(n-2)α·sin^2α+C(n,4)cos^(n-4)α·sin^4α-…
·半角公式[/url]:
sin(α/2)=±√((1-cosα)/2)
cos(α/2)=±√((1+cosα)/2)

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。