非十进制转成十进制
方法:将相应进制的数按权展成多项式,按十进制求和。
(F8C.B)16
= F×162+8×161+C×160+B×16-1
= 3840+128+12+0.6875
=3980.6875
(10011.01)2
=1×24+0×23+0×22+1×21+1×20+0×2-1+1×2-2
=16+2+1+0.25
=19.25
十进制转化为其他进制
整数部分的转换
除基取余法:用目标数制的基数去除十进制数,第一次相除所得余数为目的数的最低位 K0,将所得商再除以基数,反复执行上述过程,直到商为“0”,所得余数为目的数的最高位。
例:(81)10=(?)
得:(81)10 =(1010001)2
小数部分的转换
乘基取整法:小数乘以目标数制的基数,第一次相乘结果的整数部分为目的数的最高位,将其小数部分再乘基数依次记下整数部分,反复进行下去,直到小数部分为“0”,或满足要求的精度为止。(如2-5,只要求到小数点后第五位)
例: (0.65)10 =( ? )2 要求精度为小数五位。
由此得:(0.65)10=(0.10100)2
综合得:(81.65)10=(1010001.10100)2
二进制与八进制间的转换
从小数点开始,将二进制数的整数和小数部分每三位分为一组,不足三位的分别在整数的最高位前和小数的最低位后加“0”补足,然后每组用等值的八进制码替代,即得目的数。
例:(11010111.0100111)2 = (327.234)8
二进制与十六进制间的转换
从小数点开始,将二进制数的整数和小数部分每四位分为一组,不足四位的分别在整数的最高位前和小数的最低位后加“0”补足,然后每组用等值的十六进制码替代,即得目的数。
例: (111011.10101)2=(3B.A8)16
综合示例:
将 -617 用八进制和十六进制(补码)表示:


答案: (-617)10=(176627)8=(fd97)16
原理:任何数在内存中都是以二进制补码的形式存放的.
      正数的补码就是其本身的二进制.
      负数的补码是其绝对值的二进制的反码加+1.

1:-617的绝对值:617
    其二进制0000001001101001(整型16位)
2: 反码 :1111 1101 1001 0110.
3:加1后 :1111 1101 1001 0111.
转8进制,3位一体:
即:001 111 110 110 010 111
  1  7  6  6  2  7
转16进制,4位一体:
即:1111 1101 1001 0111
      F    D    9    7
为了您的安全,请只打开来源可靠的网址
支持小数点的进制转换器
打开网站    取消
来自: hi.baidu/101747/blog/item/e4c8a4f7153beb24730eec38.html
   

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。