航模的名词中英文翻译和注释
Antenna----天线
发射机及接收机皆有天线,使用时应把发射机天线完全拉出,以利传送讯号。接收机之天线要利用树脂管子由机首延伸出机外,不可将接收机天线裁短或卷成一团,以免减少接收距离。
Aileron-----副翼 控制直升机左右倾斜的方向。
Aux------辅助的 英文auxiliary的缩写。
五通以上的接收机,其第六以上的频道名称会以Aux 1、Aux 2来命名。
ATV-----行程量 伺服机的左右最大转动角度。一般而言ATV为100%时,伺服机约可转动50°,120%时约可转动60°。
Carburetor-----化油器 控制进气口的节气阀开口大小,调节燃油与空气的混合比。
Channel----频道 频道的解释有两种,一为发射机与接收机所使用的无线电波频率,国内目前只开放72MHz波段为飞行器合法频道。二为发射机与接收机所能控制的动作数。
Crystal-----晶体 石英振荡器,用来控制发射机与接收机之无线电波频率。
Dual rate----大小动作比例 控制摇杆与伺服机行程量的比例,设定为100%时,摇杆打满舵,伺服机移动总行程量的100%;设为70%时,摇杆打满舵,伺服机只移动总行程量的70%。
Elevator--升降舵 控制直升机前进後退的方向。
Fail-Safe--失控保护 遇到电波干扰时会自动锁定伺服机,只有采用PCM编码的遥控设备才具备此功能。
Gear-----起落架 控制机轮的收放。
Ground Effect---地面效应 当机体接近地面时,主旋翼与地面间会产生一股上升的浮力,类似乱流,使机体较不稳定。典型的地面效应其有效高度约等於主旋翼旋转面的直径长度。
Gyro----陀螺仪 能侦测机体以主轴为中心点的自转角速度,并自动修正,保持方向舵的稳定,是方向舵的装置。有机械式、压电式及机头锁定式三种。
Hunting----追踪现象 若陀螺仪的感度设得太大,当直升机在高速飞行时机尾会产生左右摇摆的现象。解决的方法是降低陀螺仪的感度。
Idle mixture---副油针 又称低速油针,控制引擎低速运转时的油气混合比。
Needle valve--主油针 又称高速油针,控制引擎中、高速运转时的油气混合比。
Ni-Cd battery--镍镉电池 可充电式电池,每个单体的电压为1.2V,由数个单体串接成为电池组。发射机用9.6V,接收机用4.8V。镍镉电池的优点是容量大,可提供稳定的电流,缺点是有记忆效应及放电截止电压。
Pitch---螺距 旋翼回转平面与翼片翼弦线前缘与後缘连接而成的假想直线所成的夹角。必须用螺距规(Pitch gauge)来测量。
Receiver---接收机 接收由发射机送出之电波讯号,并转换为控制伺服机之讯号。依编码方式不同可分为AM、FM(PPM)与PCM。
Revolution Mixing---上下跟轴 主旋翼以顺时针方向旋转的直
升机,机体会产生逆时针方向旋转的扭力,必须藉由尾旋翼产生的作用力来抵消。当主旋翼的转速或螺距改变时(意指拨动油门摇杆),其产生的扭力大小也会跟著改变,因此必须同时改变尾旋翼的螺距,使其产生的作用力与主旋翼产生的扭力刚好可以互相抵消。一般的陀螺仪并不足以修正此变化量(锁定式的陀螺仪除外),必须藉由尾舵与螺距作混控来补正。
Rudder--方向舵(尾舵) 控制直升机左右旋转的方向。
Servo---伺服机 由无核心马达所构成,可依据接收机发出的指令,转动至定点的位置,是各个舵面的动力来源。伺服机的规格主要是扭力与速度,扭力的单位是sec/60°,意指摆臂长度1公分处所能吊起的物重。速度的单位是秒/60°,意指转动60°所需要的秒数。
Sub-trim----辅助微调 调整伺服机的中立点位置,由遥控器内部的程式设定。
Throttle---油门 控制化油器的节气阀开口大小,进而控制引擎的转速。
Transmitter---发射机 俗称遥控器,发射无线电波之控制讯号给接收机。依编码方式不同可分为AM(Amplitude Modulation)、FM(Frequency Modulation)与PCM(Pulse Code Modulation)。AM容易被干扰,一般使用於低价位之遥控器,FM无失控保护装置。发射机与接收机须使用相同的无线电波频率及编码方式。
Trim---微调 调整伺服机的中立点位置,由遥控器面板上的滑动开关控制!
各种不同的翼型介绍
飞机最重要的部分当然是机翼了,飞机能飞在空中全靠机翼的浮力,机翼的剖面称之为翼型,为了适
应各种不同的需要,航空前辈们发展了各种不同的翼型,从适用超音速飞机到手掷滑翔机的翼型都有,100年来有相当多的单位及个人做有系统的研究,与模型有关的方面比较重要的发展机构及个人有:
1NACA:国家航空咨询委员会即美国太空总署﹝NASA﹞的前身,有一系列之翼型研究,比较有名的翼型是”四位数”翼型及”六位数”翼型,其中”六位数” 翼型是层流翼。
2易卜拉:易卜拉原先发展滑翔机翼型,后期改研发模型飞机翼型。
3渥特曼:渥特曼教授对现今真滑翔机翼型有重大贡献。
4哥庭根:德国一次大战后被禁止发展飞机,但滑翔机没在禁止之列,所以哥庭根大学对低速﹝低雷诺数﹞飞机翼型有一系列的研究,对遥控滑翔机及自由飞﹝无遥控﹞模型非常适用
5班奈狄克:匈牙利的班奈狄克翼型是专门针对自由飞模型,有很多翼型可供选择。
有些翼型有特殊的编号方式让你看了编号就大概知道其特性,如NACA2412,第一个数字2代表中弧线最大弧高是2%,第二个数字4代表最大弧高在前缘算起40%的位置,第三、四数字12代表最
大厚度是弦长的12%,所以NACA0010,因第一、二个数字都是0,代表对称翼,最大厚度是弦长的10
%,但要注意每家命名方式都不同,有些只是单纯的编号。因为翼型实在太多种类了,一般人如只知编号没有坐标也搞不清楚到底长什么样,所以在模型飞机界称呼翼型一般常分成以下几类:
1全对称翼:上下弧线均凸且对称。
2半对称翼:上下弧线均凸但不对称。
3克拉克Y翼:下弧线为一直线,其实应叫平凸翼,有很多其它平凸翼型,只是克拉克Y翼最有名,故把这类翼型都叫克拉克Y翼,但要注意克拉克Y翼也有好几种。
4S型翼:中弧线是一个平躺的S型,这类翼型因攻角改变时,压力中心较不变动,常用于无尾翼机。
5内凹翼:下弧线在翼弦在线,升力系数大,常见于早期飞机及牵引滑翔机,所有的鸟类除蜂鸟外都是这种翼型。
6其它特种翼型。
以上的分类只是一个粗糙的分类,在观察一个翼型的时候,最重要的是出它的中弧线,然后再看它中弧线两旁厚度分布的情形,中弧线弯曲的方式、程度大至决定了翼型的特性,弧线越弯升力系数就越大,但一般来说光用眼睛看非常不可靠,克拉克Y翼的中弧线就比很多内凹翼还弯。
飞行中之阻力 如何减少阻力是飞机设计的一大难题,飞行中飞机引擎的推力全部用来克服阻力,如果可以减少阻力则飞机可以飞得更快,不然可以把引擎改小减少重量及耗油量,拿现代私人小飞机与一次大战战斗机相比,引擎大约都差不多一百多匹马力,现代私人小飞机光洁流线的机身相对于一次大战战斗机整架飞机一堆乱七八糟的支柱与张线,现代飞机速度几乎是它前辈的一倍,所以减少阻力是我们设计飞机时需时时刻刻要注意的,我们先要了解阻力如何产生,一架飞行中飞机阻力可分成四大类:
1磨擦阻力:空气分子与飞机磨擦产生的阻力,这是最容易理解的阻力但不很重要,只占总阻力的一小部分,当然为减少磨擦阻力还是尽量把飞机磨光。
2形状阻力:物体前后压力差引起的阻力,平常汽车广告所说的风阻系数就是指形状阻力系数,飞机做得越流线形,形状阻力就越小,尖锥状的物体形状阻力不见得最小,反而是有一点钝头的物体阻力小,读者如果有机会看到油轮船头水底下那部分,你会看到一个大头,高级滑翔机大部分也有一个大头,除了提供载人的空间外也是为了减少形状阻力。
3诱导阻小,只不过是一架小飞机,如像类似747这种大家伙起飞降落后,小飞机要隔一阵子才能起降,否则飞入这种涡流,后果不堪设想,这种阻力是因为涡流产力:机翼的翼端部
因上下压力差,空气会从压力大往压力小的方向移动,部份空气不会规规矩矩往后移动,而从旁边往
上翻,因而在两端产生涡流,因而产生阻力,这现象在飞行表演时,飞机翼端如有喷烟时可看得非常清楚,你可以注意涡流旋转的方向是NASA的照片,可看见壮观的涡流,因为这种涡流延伸至水平尾翼时,从水平尾翼的观点气流是从上往下吹,因此会减小水平尾翼的攻角,也就是说水平尾翼的攻角实际会比较生,所以也称涡流阻力。
4寄生阻力:所有控制面的缝隙﹝如主翼后缘与副翼间﹞、主翼及尾翼与机身接合处、机身开孔处、机轮及轮架、拉杆等除本身的原有的阻力以外,另外衍生出来的阻力。一架飞机的总阻力就是以上四种阻力的总合,但飞机的阻力互相影响的,以上的分类只是让讨论方便而已,另外诱导阻力不只出现在翼端,其它舵面都会产生,只是翼端比较严重,磨擦阻力、形状阻力、寄生阻力与速度的平方成正比,速度越快阻力越大,诱导阻力则与速度的平方成反比,所以要减少阻力的话,无动力飞机重点在减少诱导阻力,高速飞机重点在减少形状阻力与寄生阻力。
模型飞机螺旋桨原理与拉力计算
一、工作原理
可以把螺旋桨看成是一个一面旋转一面前进的机翼进行讨论。流经桨叶各剖面的气 流由沿旋转轴方向的前进速度和旋转产生的切线速度合成。在螺旋桨半径r1和r2(r1<r2)两处各取极小一段,讨论桨叶上的气流情况。V—轴向速度;n —螺旋桨转速;φ—气流角,即气流与螺旋桨旋转平面夹角;α—桨叶
剖面迎角;β—桨叶角,即桨叶剖面弦线与旋转平面夹角。显而易见β=α+φ。
空 气流过桨叶各小段时产生气动力,阻力ΔD和升力ΔL,见图1—1—19,合成后 总空气动力为ΔR。ΔR沿飞行方向的分力为拉力ΔT,与旋螺桨旋转方向相反的力ΔP 阻止螺旋桨转动。将整个桨叶上各小段的拉力和阻止旋转的力相加,形成该螺旋桨的拉 力和阻止螺旋桨转动的力矩。
从以上两图还可以看到。必须使 螺旋桨各剖面在升阻比较大的迎角工作,才能获得较大的拉力,较小的阻力矩,也就是效率较高。螺旋桨工作时。轴向速度不随半径变化,而切线速度随半径变化。 因此在接近桨尖,半径较大处气流角较小,对应桨叶角也应较小。而在接近桨根,半径较小处气流角较大,对应桨叶角也应较大。螺旋桨的桨叶角从桨尖到桨根应按 一定规律逐渐加大。所以说螺旋桨是一个扭转了的机翼更为确切。
从图中还可以看到,气流角实际上反映前进速度和切线速度的比值。对某个螺旋桨的 某个剖面,剖面迎角随该比值变化而变化。迎角变化
,拉力和阻力矩也随之变化。用进矩比“J”反映桨尖处气流角,J=V/nD。式中D—螺旋桨直径。理论和 试验证明:螺旋桨的拉力(T),克服螺旋桨阻力矩所需的功率(P)和效率(η)可用下列公式 计算:
T=Ctρn2D4
P=Cpρn3D5
η=J?Ct/Cp
式 中:Ct—拉力系数;Cp—功率系数;ρ—空气密度;n—螺旋桨转速;D—螺旋桨直径。其 中Ct和Cp取决于螺旋桨的几何参数,对每个螺旋桨其值随J变化。图1—1—21称为螺 旋桨的特性曲线,它可通过理论计算或试验获得。特性曲线给出该螺旋桨拉力系数、功 率系数和效率随前进比变化关系。是设计选择螺旋桨和计算飞机性能的主要依据之一。
从图形和计算公式都可以看到,当前进比较小时,螺旋桨效率很 低。对飞行速度较 低而发动机转速较高的轻型飞机极为不利。例如:飞行速度为72千米/小时,发动转 速为6500转/分时,η≈32%。因此超轻型飞机必须使用减速器,降低螺旋桨的转 速,提高进距比,提高螺旋桨的效率。
二、几何参数
直径(D):影响螺旋桨性能重要参数之一。一般情况下,直径增大拉力随之增大, 效率随之提高。所以在结构允许的情况下尽量选直径较大的螺旋桨。此外还要考虑螺旋 桨桨尖气流速度不应过大(<0.7音速),否则可能出现激波,导致效率降低。
桨叶数目(B):可以认为螺旋桨的拉力系数和功率系数与桨叶数目成正比。超轻型飞 机一般采用结构简
单的双叶桨。只是在螺旋桨直径受到限制时,采用增加桨叶数目的方 法使螺旋桨与发动机获得良好的配合。
实度(σ):桨叶面积与螺旋桨旋转面积(πR2)的比值。它的影响与桨叶数目的影响相 似。随实度增加拉力系数和功率系数增大。
桨叶角(β):桨叶角随半径变化,其变化规律是影响桨工作性能最主要的因素。习惯 上以70%直径处桨叶角值为该桨桨叶角的名称值。
螺距:它是桨叶角的另一种表示方法。图1—1—22是各种意义的螺矩与桨叶角的关 系。
几 何螺距(H):桨叶剖面迎角为零时,桨叶旋转一周所前进的距离。它反映了桨叶 角的大小,更直接指出螺旋桨的工作特性。桨叶各剖面的几何螺矩可能是不相等的。习 惯上以70%直径处的几何螺矩做名称值。国外可按照直径和螺距订购螺旋桨。如 64/34,表示该桨直径为60英寸,几何螺矩为34英寸。
实际螺距(Hg):桨叶旋转一周飞机所前进的距离。可用Hg=v/n计算螺旋桨的实际螺矩值。可按H=1.1~1.3Hg粗略估计该机所用螺旋桨几何螺矩的数值。
理论螺矩(HT):设计螺旋桨时必须考虑空气流过螺旋桨时速度增加,流过螺旋桨旋转平面的气流速度
大于飞行速度。因而螺旋桨相对空气而言所
前进的距离一理论螺矩将大于实际螺矩。
三、螺旋桨拉力在飞行中的变化
1.桨叶迎角随转速的变化
在飞行速度不变的情况下,转速增加,则切向速度(U)增大,进距比减小桨叶迎角增大,螺旋桨拉力系数增大(图1—1—20所示)。又由于拉力与转速平方成正比,所以增大油门时,可增大拉力。
2.桨叶迎角随飞行速度的变化:
在转速不变的情况下,飞行速度增大,进距比加大,桨叶迎角减小,螺旋桨拉力系数减小。如图1—1—20所示,拉力随之降低。
当飞行速度等于零时,切向速度就是合速度,桨叶迎角等于桨叶角。飞机在地面试 车时,飞行速度(V)等于零,桨叶迎角最大,一些剖面由于迎角过大超过失速迎角气动 性能变坏,因而螺旋桨产生的拉力不一定最大。
3.螺旋桨拉力曲线:
根据螺旋桨拉力随飞行速度增大而减小的规律,可绘出螺旋桨可用拉力曲线。
4.螺旋桨拉力随转速、飞行速度变化的综合情况:
在线翻译英文翻译在飞行中,加大油门后固定。螺旋桨的拉力随转速和飞行速度的变化过程如下:
由 于发动机输出功率增大,使螺旋桨转速(切向速度)迅速增加到一定值,螺旋桨拉 力增加。飞行速度增加,由于飞行速度增大,致使桨叶迎角又开始逐渐减小,拉力也随 之逐渐降低,飞机阻力逐渐增大,从而速度的增加趋势也逐渐减慢。当拉力降低到一定 程度(即拉力等于阻力)后,飞机的速度则不再增加。此时,飞行速度、转速、桨叶迎角 及螺旋桨拉力都不变,飞机即保持在一个新的速度上飞行。
四、螺旋桨的自转:
当发动机空中停车后,螺旋桨会象风车一样继续沿着原来的方向旋转,这种现象, 叫螺旋桨自转。
螺旋桨自转,不是发动机带动的,而是被桨叶的迎面气流“推着”转的。它不但不能 产生拉力,反而增加了飞机的阻力。
从 图1—1—24中看出,螺旋桨发生自转时,由于形成了较大的负迎角。桨叶的总空 气动力方向及作
用发生了质的变化。它的一个分力(Q)与切向速度(U)的方向相同,成为 推动桨叶自动旋转的动力,迫使桨叶沿原来方向续继旋转:另一个分力(-P)与速度方向 相反,对飞行起着阻力作用。
一些超轻型飞机的发动机空中停车后由于飞行速度较小,产生自旋力矩不能克服螺 旋桨的阻旋力矩时螺旋桨不会出现自转。此时,桨叶阻力较大,飞机的升阻比(或称滑 翔比)将大大降低。
五、螺旋桨的有效功率:
1.定义:螺旋桨产生拉力,拉着飞机前进,对飞机作功。螺旋桨单位时间所作功, 即为螺旋桨的有效功率。
公式: N桨=PV
式中: N桨—螺旋桨的有效功率;P—螺旋桨的拉力;V—飞行速度
2.螺旋桨有效

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。