详解Python基础random模块随机数的⽣成
随机数参与的应⽤场景⼤家⼀定不会陌⽣,⽐如密码加盐时会在原密码上关联⼀串随机数,蒙特卡洛算法会通过随机数采样等等。Python内置的random模块提供了⽣成随机数的⽅法,使⽤这些⽅法时需要导⼊random模块。
import random
下⾯介绍下Python内置的random模块的⼏种⽣成随机数的⽅法。
1、random.random() 随机⽣成 0 到 1 之间的浮点数[0.0, 1.0) 。
print("random: ", random.random())
#random: 0.5714025946899135
2、random.randint(a , b) 随机⽣成 a 与 b 之间的整数[a, b]。
print("randint: ", random.randint(6,8))
#randint: 8
3、random.randrange(start,stop,step)按步长step随机在上下限范围内取⼀个随机数。
print("randrange: ",random.randrange(20,100,5))
#randrange: 85
4、random.uniform(a, b) 随机⽣成 a 与 b 之间的浮点数[a, b]。
print("uniform: ",random.uniform(5,10))
#uniform: 5.119790163375776
5、random.choice() 从列表中随机取出⼀个元素,⽐如列表、元祖、字符串等。注意的是,该⽅法需要参数⾮空,否则会抛出IndexError 的错误。
print("choice: ",random.choice("www.yuanxiao"))
#choice: y
6、random.shuffle(items) 把列表 items 中的元素随机打乱。注意的是,如果不想修改原来的列表,可以使⽤ copy 模块先拷贝⼀份原来的列表。
num = [1, 2, 3, 4, 5]
random.shuffle(num)
print("shuffle: ",num)
#shuffle: [1, 3, 5, 4, 2]
7、random.sample(items, n) 从列表 items 中随机取出 n 个元素。
num = [1, 2, 3, 4, 5]
print("sample: ",random.sample(num, 3))
#sample: [4, 1, 5]
Python 的random模块产⽣的随机数其实是伪随机数,依赖于特殊算法和指定不确定因素(种⼦seed)来实现。如randint⽅法⽣成⼀定范围内的随机数,会先指定⼀个特定的seed,将seed通过特定的随机数产⽣算法,得到⼀定范围内随机分布的随机数。因此对于同⼀个seed值的输⼊产⽣的随机数会相同,省略参数则意味着使⽤当前系统时间秒数作为种⼦值,达到每次运⾏产⽣的随机数都不⼀样。
random.seed(2)
print("random: ", random.random())
#random: 0.9560342718892494
random.seed(3)
print("random: ", random.random())
#random: 0.23796462709189137
random.seed(3)#同⼀个种⼦值,产⽣的随机数相同
print("random: ", random.random())
#random: 0.23796462709189137
numpy库也提供了random模块,⽤于⽣成多维度数组形式的随机数。使⽤时需要导⼊numpy库。
import numpy as np
下⾯介绍下numpy库的random模块的⼏种⽣成随机数的⽅法。
1、numpy.random.rand(d0,d1,…,dn)
1. rand函数根据给定维度⽣成[0,1]之间的数据,包含0,不包含1
2. dn表格每个维度
3. 返回值为指定维度的array
print("np.random.rand:\n {}".format(np.random.rand(4,2))) # shape: 4*3
"""
np.random.rand:
[[0.5488135 0.71518937]
[0.60276338 0.54488318]
[0.4236548 0.64589411]
[0.43758721 0.891773 ]]
"""
print("np.random.rand:\n {}".format(np.random.rand(4,3,2))) # shape: 4*3*2
"""
np.random.rand:
python生成1到100之间随机数[[[0.96366276 0.38344152]
[0.79172504 0.52889492]
[0.56804456 0.92559664]]
[[0.07103606 0.0871293 ]
[0.0202184 0.83261985]
[0.77815675 0.87001215]]
[[0.97861834 0.79915856]
[0.46147936 0.78052918]
[0.11827443 0.63992102]]
[[0.14335329 0.94466892]
[0.52184832 0.41466194]
[0.26455561 0.77423369]]]
"""
2、numpy.random.randn(d0,d1,…,dn)
1. randn函数返回⼀个或⼀组样本,具有标准正态分布。
2. dn表格每个维度
3. 返回值为指定维度的array
4. 标准正态分布—-standard normal distribution
5. 标准正态分布⼜称为u分布,是以0为均值、以1为标准差的正态分布,记为N(0,1)。print("np.random.randn:\n {}".format(np.random.randn())) # 当没有参数时,返回单个数据
"""
np.random.randn:
2.2697546239876076
"""
print("np.random.randn:\n {}".format(np.random.randn(2,4)))
"""
np.random.randn:
[[-1.45436567 0.04575852 -0.18718385 1.53277921]
[ 1.46935877 0.15494743 0.37816252 -0.88778575]]
"""
print("np.random.randn:\n {}".format(np.random.randn(4,3,2)))
"""
np.random.randn:
[[[-1.98079647 -0.34791215]
[ 0.15634897 1.23029068]
[ 1.20237985 -0.38732682]]
[[-0.30230275 -1.04855297]
[-1.42001794 -1.70627019]
[ 1.9507754 -0.50965218]]
[[-0.4380743 -1.25279536]
[ 0.77749036 -1.61389785]
[-0.21274028 -0.89546656]]
[[ 0.3869025 -0.51080514]
[-1.18063218 -0.02818223]
[ 0.42833187 0.06651722]]]
"""
3、numpy.random.randint(low, high=None, size=None, dtype='l')
1. 返回随机整数,范围区间为[low,high),包含low,不包含high
2. 参数:low为最⼩值,high为最⼤值,size为数组维度⼤⼩,dtype为数据类型,默认的数据类型是np.int
3. high没有填写时,默认⽣成随机数的范围是[0,low]
print("np.random.randint:\n {}".format(np.random.randint(1,size=5)))# 返回[0,1)之间的整数,所以只有0
"""
np.random.randint:
[0 0 0 0 0]
"""
print("np.random.randint:\n {}".format(np.random.randint(1,5)))# 返回1个[1,5)时间的随机整数
"""
np.random.randint:
2
"""
print("np.random.randint:\n {}".format(np.random.randint(-5,5,size=(2,2))))
"""
np.random.randint:
[[-5 -3]
[ 2 -3]]
"""
4、numpy.random.seed()
1. np.random.seed()的作⽤:使得随机数据可预测。
2. 当我们设置相同的seed,每次⽣成的随机数相同。如果不设置seed,则每次会⽣成不同的随机数
以上所述是⼩编给⼤家介绍的Python基础random模块随机数的⽣成详解整合,希望对⼤家有所帮助,如果⼤家有任何疑问请给我留⾔,⼩编会及时回复⼤家的。在此也⾮常感谢⼤家对⽹站的⽀持!
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。
发表评论