教你⽤⼀⾏Python代码实现并⾏任务(附代码)Python在程序并⾏化⽅⾯多少有些声名狼藉。撇开技术上的问题,例如线程的实现和GIL,我觉得错误的教学指导才是主要问题。常见的经典Python多线程、多进程教程多显得偏"重"。⽽且往往隔靴搔痒,没有深⼊探讨⽇常⼯作中最有⽤的内容。
传统的例⼦
简单搜索下"Python多线程教程",不难发现⼏乎所有的教程都给出涉及类和队列的例⼦:
#Example.py
'''
Standard Producer/Consumer Threading Pattern
'''
import time
import threading
import Queue
class Consumer(threading.Thread):
def __init__(self, queue):
threading.Thread.__init__(self)
self._queue = queue
def run(self):
while True:
# () blocks the current thread until
# an item is retrieved.
msg = self._()
# Checks if the current message is
# the "Poison Pill"
if isinstance(msg, str) and msg == 'quit':
# if so, exists the loop
break
# "Processes" (or in our case, prints) the queue item
print "I'm a thread, and I received %s!!" % msg
# Always be friendly!
print 'Bye byes!'
def Producer():
# Queue is used to share items between
# the threads.
queue = Queue.Queue()函数公式excel常用
# Create an instance of the worker
worker = Consumer(queue)
# start calls the internal run() method to
# kick off the thread
worker.start()
# variable to keep track of when we started
start_time = time.time()
# While under 5 seconds..
while time.time() - start_time < 5:
# "Produce" a piece of work and stick it in
# the queue for the Consumer to process
queue.put('something at %s' % time.time())
# Sleep a bit just to avoid an absurd number of messages
time.sleep(1)
# This the "poison pill" method of killing a thread.
queue.put('quit')
# wait for the thread to close down
worker.join()
if __name__ == '__main__':
Producer()
哈,看起来有些像 Java 不是吗?
我并不是说使⽤⽣产者/消费者模型处理多线程/多进程任务是错误的(事实上,这⼀模型⾃有其⽤武之地)。只是,处理⽇常脚本任务时我们可以使⽤更有效率的模型。
问题在于…
⾸先,你需要⼀个样板类;
其次,你需要⼀个队列来传递对象;
⽽且,你还需要在通道两端都构建相应的⽅法来协助其⼯作(如果需想要进⾏双向通信或是保存结果还需要再引⼊⼀个队列)。
worker越多,问题越多
按照这⼀思路,你现在需要⼀个worker线程的线程池。下⾯是⼀篇IBM经典教程中的例⼦——在进⾏⽹页检索时通过多线程进⾏加速。
#Example2.py
'''
A more realistic thread pool example
'''
import time
import threading
import Queue
import urllib2
class Consumer(threading.Thread):
def __init__(self, queue):
threading.Thread.__init__(self)
self._queue = queue
def run(self):
while True:
content = self._()
if isinstance(content, str) and content == 'quit':
break
response = urllib2.urlopen(content)
print 'Bye byes!'
def Producer():
urls = [
'', 'www.yahoo'
'', 'le'
# etc..
]
queue = Queue.Queue()
worker_threads = build_worker_pool(queue, 4)
start_time = time.time()
# Add the urls to process
for url in urls:
queue.put(url)
# Add the poison pillv
for worker in worker_threads:
queue.put('quit')
for worker in worker_threads:
worker.join()
print 'Done! Time taken: {}'.format(time.time() - start_time)
def build_worker_pool(queue, size):
workers = []
for _ in range(size):
worker = Consumer(queue)
worker.start()
workers.append(worker)
return workers
if __name__ == '__main__':
Producer()
python基础代码实例这段代码能正确的运⾏,但仔细看看我们需要做些什么:构造不同的⽅法、追踪⼀系列的线程,还有为了解决恼⼈的死锁问题,我们需要进⾏⼀系列的join操作。这还只是开始……
⾄此我们回顾了经典的多线程教程,多少有些空洞不是吗?样板化⽽且易出错,这样事倍功半的风格显然不那么适合⽇常使⽤,好在我们还有更好的⽅法。
计算机二级考试c语言难吗
何不试试 map
map这⼀⼩巧精致的函数是简捷实现Python程序并⾏化的关键。map源于Lisp这类函数式编程语⾔。它可以通过⼀个序列实现两个函数之间的映射。
urls = ['www.yahoo', 'ddit']
results = map(urllib2.urlopen, urls)
上⾯的这两⾏代码将 urls 这⼀序列中的每个元素作为参数传递到 urlopen ⽅法中,并将所有结果保存到 results 这⼀列表中。其结果⼤致相当于:
results = []
for url in urls:
results.append(urllib2.urlopen(url))
map 函数⼀⼿包办了序列操作、参数传递和结果保存等⼀系列的操作。
为什么这很重要呢?这是因为借助正确的库,map可以轻松实现并⾏化操作。
在Python中有个两个库包含了map函数: multiprocessing和它鲜为⼈知的⼦库 multiprocessing.dummy.
这⾥多扯两句:multiprocessing.dummy? mltiprocessing库的线程版克隆?这是虾⽶?即便在multiprocessing库的官⽅⽂档⾥关于这⼀⼦库也只有⼀句相关描述。⽽这句描述译成⼈话基本就是说:"嘛,有这么个东西,你知道就成."相信我,这个库被严重低估了!
dummy是multiprocessing模块的完整克隆,唯⼀的不同在于multiprocessing作⽤于进程,⽽dummy模块作⽤于线程(因此也包括了Python所有常见的多线程限制)。
所以替换使⽤这两个库异常容易。你可以针对IO密集型任务和CPU密集型任务来选择不同的库。
动⼿尝试
使⽤下⾯的两⾏代码来引⽤包含并⾏化map函数的库:
from multiprocessing import Pool
from multiprocessing.dummy import Pool as ThreadPool
实例化 Pool 对象:
list接口下面的三个实现类pool = ThreadPool()
这条简单的语句替代了example2.py中buildworkerpool函数7⾏代码的⼯作。它⽣成了⼀系列的worker线程并完成初始化⼯作、将它们储存在变量中以⽅便访问。
Pool对象有⼀些参数,这⾥我所需要关注的只是它的第⼀个参数:processes. 这⼀参数⽤于设定线程池中的线程数。其默认值为当前机器CPU的核数。
⼀般来说,执⾏CPU密集型任务时,调⽤越多的核速度就越快。但是当处理⽹络密集型任务时,事情有有些难以预计了,通过实验来确定线程池的⼤⼩才是明智的。
pool = ThreadPool(4) # Sets the pool size to 4
线程数过多时,切换线程所消耗的时间甚⾄会超过实际⼯作时间。对于不同的⼯作,通过尝试来到线程池⼤⼩的最优值是个不错的主意。
创建好Pool对象后,并⾏化的程序便呼之欲出了。我们来看看改写后的example2.py
import urllib2
from multiprocessing.dummy import Pool as ThreadPool
urls = [
'',
'/about/',
'lamp/pub/a/python/2003/04/17/metaclasses.html',
'/doc/',
'/download/',
'/getit/',
'/community/',
'/moin/',
'/',
'/moin/LocalUserGroups',
'/psf/',
'/devguide/',
'/community/awards/'
# etc..
]
# Make the Pool of workers
pool = ThreadPool(4)
# Open the urls in their own threads
# and return the results
results = pool.map(urllib2.urlopen, urls)
#close the pool and wait for the work to finish
pool.close()
pool.join()
实际起作⽤的代码只有4⾏,其中只有⼀⾏是关键的。map函数轻⽽易举的取代了前⽂中超过40⾏的例⼦。为了更有趣⼀些,我统计了不同⽅法、不同线程池⼤⼩的耗时情况。
# results = []
# for url in urls:
#  result = urllib2.urlopen(url)
#  results.append(result)
# # ------- VERSUS ------- #
# # ------- 4 Pool ------- #
# pool = ThreadPool(4)
# results = pool.map(urllib2.urlopen, urls)
# # ------- 8 Pool ------- #
# pool = ThreadPool(8)
# results = pool.map(urllib2.urlopen, urls)
# # ------- 13 Pool ------- #
# pool = ThreadPool(13)
# results = pool.map(urllib2.urlopen, urls)
结果:
#        Single thread:  14.4 Seconds
#              4 Pool:  3.1 Seconds
#              8 Pool:  1.4 Seconds
#              13 Pool:  1.3 Seconds
很棒的结果不是吗?这⼀结果也说明了为什么要通过实验来确定线程池的⼤⼩。在我的机器上当线程池⼤⼩⼤于9带来的收益就⼗分有限了。
另⼀个真实的例⼦
⽣成上千张图⽚的缩略图
这是⼀个CPU密集型的任务,并且⼗分适合进⾏并⾏化。
基础单进程版本
import os
import PIL
from multiprocessing import Pool
from PIL import Image
SIZE = (75,75)
SAVE_DIRECTORY = 'thumbs'
def get_image_paths(folder):
return (os.path.join(folder, f)
for f in os.listdir(folder)
if 'jpeg' in f)
def create_thumbnail(filename):
im = Image.open(filename)
im.thumbnail(SIZE, Image.ANTIALIAS)
页游源码论坛
base, fname = os.path.split(filename)
save_path = os.path.join(base, SAVE_DIRECTORY, fname)
im.save(save_path)
if __name__ == '__main__':
folder = os.path.abspath(
'11_18_2013_R000_IQM_Big_Sur_Mon__e10d1958e7b766c3e840')
os.mkdir(os.path.join(folder, SAVE_DIRECTORY))
images = get_image_paths(folder)
for image in images:
create_thumbnail(Image)
上边这段代码的主要⼯作就是将遍历传⼊的⽂件夹中的图⽚⽂件,⼀⼀⽣成缩略图,并将这些缩略图保存到特定⽂件夹中。
这我的机器上,⽤这⼀程序处理6000张图⽚需要花费27.9秒。
如果我们使⽤map函数来代替for循环:
import os
import PIL
from multiprocessing import Pool
from PIL import Image
SIZE = (75,75)
SAVE_DIRECTORY = 'thumbs'
def get_image_paths(folder):
开源的建站系统return (os.path.join(folder, f)
for f in os.listdir(folder)
if 'jpeg' in f)
def create_thumbnail(filename):
im = Image.open(filename)
im.thumbnail(SIZE, Image.ANTIALIAS)
base, fname = os.path.split(filename)
save_path = os.path.join(base, SAVE_DIRECTORY, fname)
im.save(save_path)
if __name__ == '__main__':
folder = os.path.abspath(
'11_18_2013_R000_IQM_Big_Sur_Mon__e10d1958e7b766c3e840')
os.mkdir(os.path.join(folder, SAVE_DIRECTORY))
images = get_image_paths(folder)
pool = Pool()
pool.map(creat_thumbnail, images)
pool.close()
pool.join()
5.6 秒!
虽然只改动了⼏⾏代码,我们却明显提⾼了程序的执⾏速度。在⽣产环境中,我们可以为CPU密集型任务和IO密集型任务分别选择多进程和多线程库来进⼀步提⾼执⾏速度——这也是解决死锁问题的良⽅。此外,由于map函数并不⽀持⼿动线程管理,反⽽使得相关的debug⼯作也变得异常简单。
到这⾥,我们就实现了(基本)通过⼀⾏Python实现并⾏化。
以上就是本⽂的全部内容,希望对⼤家的学习有所帮助,也希望⼤家多多⽀持。

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。