C语言printf()函数深入分析
说 起编程语言,C语言大家再熟悉不过。说起最简单的代码,Helloworld更是众所周知。一条简单的printf语句便可以完成这个简单的功能,可是 printf背后到底做了什么事情呢?可能很多人不曾在意,也或许你比我还要好奇!那我们就聊聊printf背后的故事。
一、printf的代码在哪里?
显然,Helloworld的源代码需要经过编译器编译,操作系统的加载才能正确执行。而编译器包含预编译、编译、汇编和链接四个步骤。
#include<stdio.h>
int main()
{
printf("Hello World !\n");
return 0;
}
首先,预编译器处理源代码中的宏,比如#include。预编译结束后,我们发现printf函数的声明。
$/usr/lib/gcc/i686-linux-gnu/4.7/cc1 -E -quiet main.c -o main.i
# 1 "main.c"
# 1 "<命令行>"
# 1 "main.c"
...
extern int printf (const char *__restrict __format, ...);
...
int main()
{
printf("Hello World!\n");
return 0;
}
然后编译器将高级语言程序转化为汇编代码。
$/usr/lib/gcc/i686-linux-gnu/4.7/cc1 -fpreprocessed -quiet main.i -o main.s
.file "main.c"
.section .rodata
.LC0:
.string "Hello World!"
.text
.globl main
.type main, @function
main:
pushl %ebp
movl %esp, %ebp
andl $-16, %esp
subl $16, %esp
movl $.LC0, (%esp)
call puts
movl $0, %eax
leave
ret
.size main, .-main
...
我 们发现printf函数调用被转化为call puts指令,而不是call printf指令,这好像有点出乎意料。不过不用担心,这是编译器对printf的一种优化。实践证明,对于printf的参数如果是以'\n'结束的纯 字符串,printf会被优化为puts函数,而字符串的结尾'\n'符号被消除。除此之外,都会正常生成call printf指令。
如果我们仍希望通过printf调用"Hello World !\n"的话,只需要按照如下方式修改即可。不过这样做就不能在printf调用结束后立即看到打印字符串了,因为puts函数可以立即刷新输出缓冲区。我们仍然使用puts作为例子继续阐述。
.section .rodata
.LC0:
.string "hello world!\n"
...
call printf
...
接下来,汇编器开始工作。将汇编文件转化为我们不能直接阅读的二进制格式——可重定位目标文件,这里我们需要gcc工具包的objdump命令查看它的二进制信息。可是我们发现call puts指令里保存了无效的符号地址。
$as -o main.o main.s
$objdump –d main.o
main.o: 文件格式 elf32-i386
Disassembly of section .text:
00000000 <main>:
0: 55 push %ebp
1: 89 e5 mov %esp,%ebp
3: 83 e4 f0 and $0xfffffff0,%esp
6: 83 ec 10 sub $0x10,%esp
9: c7 04 24 00 00 00 00 movl $0x0,(%esp)
10: e8 fc ff ff ff call 11 <main+0x11>
15: b8 00 00 00 00 mov $0x0,%eax
1a: c9 leave
1b: c3 ret
而链接器最终会将puts的符号地址修正。由于链接方式分为静态链接和动态链接两种,虽然链接方式不同,但是不影响最终代码对库函数的调用。我们这里关注printf函数背后的原理,因此使用更易说明问题的静态链接的方式阐述。
gnu编译器$/usr/lib/gcc/i686-linux-gnu/4.7/collect2 \
-static -o main \
/usr/lib/i386-linux-gnu/crt1.o \
/usr/lib/i386-linux-gnu/crti.o \
/usr/lib/gcc/i686-linux-gnu/4.7/crtbeginT.o \
main.o \
--start-group \
/usr/lib/gcc/i686-linux-gnu/4.7/libgcc.a \
/usr/lib/gcc/i686-linux-gnu/4.7/libgcc_eh.a \
/usr/lib/i386-linux-gnu/libc.a \
--end-group \
/usr/lib/gcc/i686-linux-gnu/4.7/crtend.o \
/usr/lib/i386-linux-gnu/crtn.o
$objdump –sd main
Disassembly of section .text:
...
08048ea4 <main>:
8048ea4: 55 push %ebp
8048ea5: 89 e5 mov %esp,%ebp
8048ea7: 83 e4 f0 and $0xfffffff0,%esp
8048eaa: 83 ec 10 sub $0x10,%esp
8048ead: c7 04 24 e8 86 0c 08 movl $0x80c86e8,(%esp)
8048eb4: e8 57 0a 00 00 call 8049910 <_IO_puts>
8048eb9: b8 00 00 00 00 mov $0x0,%eax
8048ebe: c9 leave
8048ebf: c3 ret
...
静 态链接时,链接器将C语言的运行库(CRT)链接到可执行文件,其中crt1.o、crti.o、crtbeginT.o、crtend.o、 crtn.o便是这五个核心的文件,它们按照上述命令显示的顺序分居在用户目标文件和库文件的两侧。由于我们使用了库函数puts,因此需要库文件 libc.a,而
libc.a与libgcc.a和libgcc_eh.a有相互依赖关系,因此需要使用—start-group和—end-group 将它们包含起来。
链 接后,call puts的地址被修正,但是反汇编显示的符号是_IO_puts而不是puts!难道我们的文件不对吗?当然不是,我们使用readelf命令查看一下 main的符号表。竟然发现puts和_IO_puts这两个符号的性质是等价的!objdump命令只是显示了全局的符号_IO_puts而已。
$readelf main –s
Symbol table '.symtab' contains 2307 entries:
Num: Value Size Type Bind Vis Ndx Name
...
1345: 08049910 352 FUNC WEAK DEFAULT 6 puts
...
1674: 08049910 352 FUNC GLOBAL DEFAULT 6 _IO_puts
...
那么puts函数的定义真的是在libc.a里吗?我们需要对此确认。我们将libc.a解压缩,然后全局符号_IO_puts所在的二进制文件,输出结果为ioputs.o。然后查看该文件的符号表。发现ioputs.o定义了puts和_IO_puts符号,因此可以确定ioputs.o就是puts函数的代码文件,且在库文件libc.a内。
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。
发表评论