第1章 绪 论
习 题
一、问答题
1. 什么是数据结构?
2. 四类基本数据结构的名称与含义。
3. 算法的定义与特性。
4. 算法的时间复杂度。
5. 数据类型的概念。
6. 线性结构与非线性结构的差别。
7. 面向对象程序设计语言的特点。
8. 在面向对象程序设计中,类的作用是什么?
9. 参数传递的主要方式及特点。
10. 抽象数据类型的概念。
二、判断题
1. 线性结构只能用顺序结构来存放,非线性结构只能用非顺序结构来存放。
2. 算法就是程序。
3. 在高级语言(如C、或 PASCAL)中,指针类型是原子类型。
三、计算下列程序段中X=X+1的语句频度
for(i=1;i<=n;i++)
for(j=1;j<=i;j++)
for(k=1;k<=j;k++)
x=x+1;
[提示]:
c语言中structi=1时: 1 = (1+1)×1/2 = (1+12)/2
i=2时: 1+2 = (1+2)×2/2 = (2+22)/2
i=3时: 1+2+3 = (1+3)×3/2 = (3+32)/2
…
i=n时: 1+2+3+……+n = (1+n)×n/2 = (n+n2)/2
f(n) = [ (1+2+3+……+n) + (12 + 22 + 32 + …… + n2 ) ] / 2
=[ (1+n)n/2 + n(n+1)(2n+1)/6 ] / 2
=n(n+1)(n+2)/6
=n3/6+n2/2+n/3
区分语句频度和算法复杂度:
O(f(n)) = O(n3)
四、试编写算法求一元多项式Pn(x)=a0+a1x+a2x2+a3x3+…anxn的值Pn(x0),并确定算法中的每一语句的执行次数和整个算法的时间复杂度,要求时间复杂度尽可能的小,规定算法中不能使用求幂函数。注意:本题中的输入ai(i=0,1,…,n), x和n,输出为Pn(x0).通常算法的输入和输出可采用下列两种方式之一:
(1) 通过参数表中的参数显式传递;
(2) 通过全局变量隐式传递。
试讨论这两种方法的优缺点,并在本题算法中以你认为较好的一种方式实现输入和输出。
[提示]:float PolyValue(float a[ ], float x, int n) {……}
核心语句:
p=1; (x的零次幂)
s=0;
i从0到n循环
s=s+a[i]*p;
p=p*x;
或:
p=x; (x的一次幂)
s=a[0];
i从1到n循环
s=s+a[i]*p;
p=p*x;
实习题
设计实现抽象数据类型“有理数”。基本操作包括有理数的加法、减法、乘法、除法,以及求有理数的分子、分母。
第一章答案
1.3计算下列程序中x=x+1的语句频度
for(i=1;i<=n;i++)
for(j=1;j<=i;j++)
for(k=1;k<=j;k++)
x=x+1;
【解答】x=x+1的语句频度为:
T(n)=1+(1+2)+(1+2+3)+……+(1+2+……+n)=n(n+1)(n+2)/6
1.4试编写算法,求pn(x)=a0+a1x+a2x2+…….+anxn的值pn(x0),并确定算法中每一语句的执行次数和整个算法的时间复杂度,要求时间复杂度尽可能小,规定算法中不能使用求幂函数。注意:本题中的输入为ai(i=0,1,…n)、x和n,输出为Pn(x0)。 算法的输入和输出采用下列方法(1)通过参数表中的参数显式传递(2)通过全局变量隐式传递。讨论两种方法的优缺点,并在算法中以你认为较好的一种实现输入输出。
【解答】
(1)通过参数表中的参数显式传递
优点:当没有调用函数时,不占用内存,调用结束后形参被释放,实参维持,函数通用性强,移置性强。
缺点:形参须与实参对应,且返回值数量有限。
(2)通过全局变量隐式传递
优点:减少实参与形参的个数,从而减少内存空间以及传递数据时的时间消耗
缺点:函数通用性降低,移植性差
算法如下:通过全局变量隐式传递参数
PolyValue()
{ int i,n;
float x,a[],p;
printf(“\nn=”);
scanf(“%f”,&n);
printf(“\nx=”);
scanf(“%f”,&x);
for(i=0;i<n;i++)
scanf(“%f ”,&a[i]); /*执行次数:n次 */
p=a[0];
for(i=1;i<=n;i++)
{ p=p+a[i]*x; /*执行次数:n次*/
x=x*x;}
printf(“%f”,p);
}
算法的时间复杂度:T(n)=O(n)
通过参数表中的参数显式传递
float PolyValue(float a[ ], float x, int n)
{
float p,s;
int i;
p=x;
s=a[0];
for(i=1;i<=n;i++)
{s=s+a[i]*p; /*执行次数:n次*/
p=p*x;}
return(p);
}
算法的时间复杂度:T(n)=O(n)
第2章 线性表
习 题
2.1 描述以下三个概念的区别:头指针,头结点,首元素结点。
2.2 填空:
(1) 在顺序表中插入或删除一个元素,需要平均移动__一半__元素,具体移动的元素个数与__插入或删除的位置__有关。
(2) 在顺序表中,逻辑上相邻的元素,其物理位置______相邻。在单链表中,逻辑上相邻的元素,其物理位置______相邻。
(3) 在带头结点的非空单链表中,头结点的存储位置由______指示,首元素结点的存储位置由______指示,除首元素结点外,其它任一元素结点的存储位置由__其直接前趋的next域__指示。
2.3 已知L是无表头结点的单链表,且P结点既不是首元素结点,也不是尾元素结点。按要求从下列语句中选择合适的语句序列。
a. 在P结点后插入S结点的语句序列是:_(4)、(1)_。
b. 在P结点前插入S结点的语句序列是:(7)、(11)、(8)、(4)、(1)。
c. 在表首插入S结点的语句序列是:(5)、(12)。
d. 在表尾插入S结点的语句序列是:(11)、(9)、(1)、(6)。
供选择的语句有:
(1)P->next=S;
(2)P->next= P->next->next;
(3)P->next= S->next;
(4)S->next= P->next;
(5)S->next= L;
(6)S->next= NULL;
(7)Q= P;
(8)while(P->next!=Q) P=P->next;
(9)while(P->next!=NULL) P=P->next;
(10)P= Q;
(11)P= L;
(12)L= S;
(13)L= P;
2.4 已知线性表L递增有序。试写一算法,将X插入到L的适当位置上,以保持线性表L的有序性。
[提示]:void insert(SeqList *L; ElemType x)
< 方法1 >
(1)出应插入位置i,(2)移位,(3)……
< 方法2 > 参P. 229
2.5 写一算法,从顺序表中删除自第i个元素开始的k个元素。
[提示]:注意检查i和k的合法性。 (集体搬迁,“新房”、“旧房”)
< 方法1 > 以待移动元素下标m(“旧房号”)为中心,
计算应移入位置(“新房号”):
for ( m= i-1+k; m<= L->last; m++)
L->elem[ m-k ] = L->elem[ m ];
< 方法2 > 同时以待移动元素下标m和应移入位置j为中心:
< 方法3 > 以应移入位置j为中心,计算待移动元素下标:
2.6已知线性表中的元素(整数)以值递增有序排列,并以单链表作存储结构。试写一高效算法,删除表中所有大于mink且小于maxk的元素(若表中存在这样的元素),分析你的算
法的时间复杂度(注意:mink和maxk是给定的两个参变量,它们的值为任意的整数)。
[提示]:注意检查mink和maxk的合法性:mink < maxk
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。
发表评论