深度学习-部分数据增强python代码实现数据增强策略:
1 在线模式--训练中
随机裁剪(完全随机,四个⾓+中⼼)  crop
def random_crop(img, scale=[0.8, 1.0], ratio=[3. / 4., 4. / 3.], resize_w=100, resize_h=100):
"""
随机裁剪
:param img:
:param scale: 缩放
:param ratio:
:param resize_w:
:param resize_h:
:
return:
"""
aspect_ratio = math.sqrt(np.random.uniform(*ratio))
w = 1. * aspect_ratio
h = 1. / aspect_ratio
src_h, src_w = img.shape[:2]
bound = min((float(src_w) / src_h) / (w ** 2),
(float(src_h) / src_w) / (h ** 2))
scale_max = min(scale[1], bound)
scale_min = min(scale[0], bound)
target_area = src_h * src_w * np.random.uniform(scale_min,
scale_max)
target_size = math.sqrt(target_area)
w = int(target_size * w)
h = int(target_size * h)
i = np.random.randint(0, src_w - w + 1)
j = np.random.randint(0, src_h - h + 1)
img = img[j:j + h, i:i + w]
img = size(img, (resize_w, resize_h))
return img
def rule_crop(img, box_ratio=(3. / 4, 3. / 4), location_type='LT', resize_w=100, resize_h=100):
"""
按照⼀定规则进⾏裁剪, 直接在原图尺⼨上操作,不对原图进⾏
:param img:
:param box_ratio: 剪切的⽐例:(宽度上的⽐例,⾼度上的⽐例)
:param location_type: 具体在=哪个位置:以下其中⼀个:
LR : 左上⾓
RT : 右上⾓
LB : 左下⾓
RB : 右下⾓
CC : 中⼼
:param resize_w: 输出图的width
:param resize_h: 输出图的height
:
return:
"""
assert location_type in ('LT', 'RT', 'LB', 'RB', 'CC'), 'must have a location .'
is_gray = False
if len(img.shape) == 3:
h, w, c = img.shape
elif len(img.shape) == 2:
h, w = img.shape
is_gray = True
crop_w, crop_h = int(w * box_ratio[0]), int(h * box_ratio[1])
crop_img = np.zeros([10, 10])
if location_type == 'LT':
crop_img = img[:crop_h, :crop_w, :] if not is_gray else img[:crop_h, :crop_w]
elif location_type == 'RT':
crop_img = img[:crop_h:, w - crop_w:, :] if not is_gray else img[:crop_h:, w - crop_w:]
elif location_type == 'LB':
crop_img = img[h - crop_h:, :crop_w, :] if not is_gray else img[h - crop_h:, :crop_w]
elif location_type == 'RB':
crop_img = img[h - crop_h:, w - crop_w:, :] if not is_gray else img[h - crop_h:, w - crop_w:]
elif location_type == 'CC':
start_h = (h - crop_h) // 2
start_w = (w - crop_w) // 2
crop_img = img[start_h:start_h + crop_h, start_w:start_w + crop_w, :] if not is_gray else img[
start_h:start_h + crop_h,
start_w:start_w + crop_w]
resize = size(crop_img, (resize_w, resize_h))
return resize
⽔平翻转  flip
def random_flip(img, mode=1):
"""
随机翻转
:param img:
:param model: 1=⽔平翻转 / 0=垂直 / -1=⽔平垂直
:
return:
"""
assert mode in (0, 1, -1), "mode is not right"
flip = np.random.choice(2) * 2 - 1  # -1 / 1
if mode == 1:
img = img[:, ::flip, :]
elif mode == 0:
img = img[::flip, :, :]
elif mode == -1:
img = img[::flip, ::flip, :]
return img
def flip(img, mode=1):
"""
翻转
:param img:
:param mode: 1=⽔平翻转 / 0=垂直 / -1=⽔平垂直
:return:
"""
assert mode in (0, 1, -1), "mode is not right"
return cv2.flip(img, flipCode=mode)
随机锐化增强
def random_USM(img, gamma=0.):
"""
USM锐化增强算法可以去除⼀些细⼩的⼲扰细节和图像噪声,⽐⼀般直接使⽤卷积锐化算⼦得到的图像更可靠。
output = 原图像−w∗⾼斯滤波(原图像)/(1−w)
其中w为上⾯所述的系数,取值范围为0.1~0.9,⼀般取0.6。
:param img:
:param gamma:
:return:
"""
blur = cv2.GaussianBlur(img, (0, 0), 25)
img_sharp = cv2.addWeighted(img, 1.5, blur, -0.3, gamma)
return img_sharp
2 离线模式
2.1 随机扰动
噪声(⾼斯、⾃定义)  noise
def random_noise(img, rand_range=(3, 20)):
"""
随机噪声
:param img:
:param rand_range: (min, max)
:return:
"""
img = np.asarray(img, np.float)
sigma = random.randint(*rand_range)
nosie = al(0, sigma, size=img.shape)
img += nosie
img = np.uint8(np.clip(img, 0, 255))
return img
滤波(⾼斯、平滑、均值、中值、最⼤最⼩值、双边、引导、运动)
# 各种滤波原理介绍:blog.csdn/hellocsz/article/details/80727972
def gaussianBlue(img, ks=(7, 7), stdev=1.5):
"""
⾼斯模糊, 可以对图像进⾏平滑处理,去除尖锐噪声
:param img:
:
param ks:  卷积核
:param stdev: 标准差
:return:
"""
return cv2.GaussianBlur(img, (7, 7), 1.5)
# 随机滤波
def ranndom_blur(img, ksize=(3, 3)):
"""
随机滤波
:param img:
:param ksize:
:
return:
"""
blur_types = ['gaussian', 'median', 'bilateral', 'mean', 'box']
assert len(blur_types) > 0
blur_func = None
blur_index = random.choice(blur_types)
if blur_index == 0:  # ⾼斯模糊, ⽐均值滤波更平滑,边界保留更加好
random pythonblur_func = cv2.GaussianBlur
elif blur_index == 1:  # 中值滤波, 在边界保存⽅⾯好于均值滤波,但在模板变⼤的时候会存在⼀些边界的模糊。对于椒盐噪声有效
blur_func = dianBlur
elif blur_index == 2:  # 双边滤波, ⾮线性滤波,保留较多的⾼频信息,不能⼲净的过滤⾼频噪声,对于低频滤波较好,不能去除脉冲噪声    blur_func = cv2.bilateralFilter
elif blur_index == 3:  # 均值滤波, 在去噪的同时去除了很多细节部分,将图像变得模糊
blur_func = cv2.blur
elif blur_index == 4:  # 盒滤波器
blur_func = cv2.boxFilter
img_blur = blur_func(src=img, ksize=ksize)
return img_blur
# 直⽅图均衡化
def equalize_hist(img):
"""
直⽅图均衡化
:param img:
:return:
"""
gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
hist = cv2.equalizeHist(gray)
rgb = cv2.cvtColor(hist, cv2.COLOR_GRAY2RGB)
return rgb
2.2 转换
旋转  rorate
def rotate(img, angle, scale=1.0):
"""
旋转
:param img:
:param angle: 旋转⾓度, >0 表⽰逆时针,
:param scale:
:return:
"""
height, width = img.shape[:2]  # 获取图像的⾼和宽
center = (width / 2, height / 2)  # 取图像的中点
M = RotationMatrix2D(center, angle, scale)  # 获得图像绕着某⼀点的旋转矩阵
# cv2.warpAffine()的第⼆个参数是变换矩阵,第三个参数是输出图像的⼤⼩
rotated = cv2.warpAffine(img, M, (height, width))
return rotated
def random_rotate(img, angle_range=(-10, 10)):
"""
随机旋转
:param img:
:param angle_range:  旋转⾓度范围 (min,max)  >0 表⽰逆时针,
:return:
"""
height, width = img.shape[:2]  # 获取图像的⾼和宽
center = (width / 2, height / 2)  # 取图像的中点
angle = random.randrange(*angle_range, 1)
M = RotationMatrix2D(center, angle, 1.0)  # 获得图像绕着某⼀点的旋转矩阵
# cv2.warpAffine()的第⼆个参数是变换矩阵,第三个参数是输出图像的⼤⼩
rotated = cv2.warpAffine(img, M, (height, width))
return rotated
偏移  shift
def shift(img, x_offset, y_offset):
"""
偏移,向右向下
:param img:
:param x_offset:  >0表⽰向右偏移px, <0表⽰向左
:param y_offset:  >0表⽰向下偏移px, <0表⽰向上
:
return:
"""
h, w, _ = img.shape
M = np.array([[1, 0, x_offset], [0, 1, y_offset]], dtype=np.float)
return cv2.warpAffine(img, M, (w, h))
倾斜  skew
...
缩放  scale
def resize_img(img, resize_w, resize_h):
height, width = img.shape[:2]  # 获取图⽚的⾼和宽
size(img, (resize_w, resize_h), interpolation=cv2.INTER_CUBIC)
RGB/BGR->HSV
def rgb2hsv_py(r, g, b):
# from blog.csdn/weixin_43360384/article/details/84871521
r, g, b = r/255.0, g/255.0, b/255.0
mx = max(r, g, b)
mn = min(r, g, b)
m = mx-mn
if mx == mn:
h = 0
elif mx == r:
if g >= b:
h = ((g-b)/m)*60
else:
h = ((g-b)/m)*60 + 360
elif mx == g:
h = ((b-r)/m)*60 + 120
elif mx == b:
h = ((r-g)/m)*60 + 240
if mx == 0:
s = 0
else:
s = m/mx
v = mx
return h, s, v
def rgb2hsv_cv(img):
# from blog.csdn/qq_38332453/article/details/89258058
h = img.shape[0]
w = img.shape[1]
H = np.zeros((h,w),np.float32)
S = np.zeros((h, w), np.float32)
V = np.zeros((h, w), np.float32)
r,g,b = cv2.split(img)
r, g, b = r/255.0, g/255.0, b/255.0
for i in range(0, h):
for j in range(0, w):
mx = max((b[i, j], g[i, j], r[i, j]))
mn = min((b[i, j], g[i, j], r[i, j]))
V[i, j] = mx
if V[i, j] == 0:
S[i, j] = 0
else:
S[i, j] = (V[i, j] - mn) / V[i, j]
if mx == mn:
H[i, j] = 0
elif V[i, j] == r[i, j]:
if g[i, j] >= b[i, j]:
H[i, j] = (60 * ((g[i, j]) - b[i, j]) / (V[i, j] - mn))
else:
H[i, j] = (60 * ((g[i, j]) - b[i, j]) / (V[i, j] - mn))+360
elif V[i, j] == g[i, j]:
H[i, j] = 60 * ((b[i, j]) - r[i, j]) / (V[i, j] - mn) + 120
elif V[i, j] == b[i, j]:
H[i, j] = 60 * ((r[i, j]) - g[i, j]) / (V[i, j] - mn) + 240
H[i,j] = H[i,j] / 2
return H, S, V
图⽚叠加与融合
def addWeight(src1, alpha, src2, beta, gamma):
"""
g (x) = (1 − α)f0 (x) + αf1 (x)  #a→(0,1)不同的a值可以实现不同的效果
dst = src1 * alpha + src2 * beta + gamma
:param src1: img1
:param alpha:
:param src2: img2
:param beta:
:param gamma:
:return:
"""
assert src1.shap == src2.shape
return cv2.addWeighted(src1, alpha, src2, beta, gamma)
颜⾊抖动(亮度\⾊度\饱和度\对⽐度)  color jitter
def adjust_contrast_bright(img, contrast=1.2, brightness=100):
"""
调整亮度与对⽐度
dst = img * contrast + brightness
:param img:
:param contrast: 对⽐度越⼤越亮
:param brightness: 亮度  0~100
:
return:
"""
# 像素值会超过0-255,因此需要截断
return np.uint8(np.clip((contrast * img + brightness), 0, 255))
def pytorch_color_jitter(img):
ansforms.ColorJitter(brightness=0, contrast=0, saturation=0, hue=0)
# gamma 变换,
def gamma_transform(img, gamma=1.0):
"""
blog.csdn/zfjBIT/article/details/85113946
伽马变换就是⽤来图像增强,其提升了暗部细节,简单来说就是通过⾮线性变换,
让图像从暴光强度的线性响应变得更接近⼈眼感受的响应,即将漂⽩(相机曝光)或过暗(曝光不⾜)的图⽚,进⾏矫正    :param img:
:param gamma:
# gamma = random.random() * random.choice([0.5, 1, 3, 5])
>1, 变暗
<1, 漂⽩
:return:
"""
assert 0 < gamma < 25.
# 具体做法先归⼀化到1,然后gamma作为指数值求出新的像素值再还原    gamma_table = [np.power(x / 255.0, gamma) * 255.0 for x in range(256)]    gamma_table = np.round(np.array(gamma_table)).astype(np.uint8)
# 实现映射⽤的是Opencv的查表函数
return cv2.LUT(img, gamma_table)
# mix up 图⽚混合
def mixup(batch_x, batch_y, alpha):
"""
Returns mixed inputs, pairs of targets, and lambda
:param batch_x:
:param batch_y:
:param alpha:
:return:
"""
if alpha > 0:
lam = np.random.beta(alpha, alpha)
else:
lam = 1
batch_size = batch_x.shape[0]
index = [i for i in range(batch_size)]
random.shuffle(index)
mixed_x = lam * batch_x + (1 - lam) * batch_x[index, :]
y_a, y_b = batch_y, batch_y[index]
return mixed_x, y_a, y_b, lam
3D⼏何变换
.
..

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。