Modified by JACK on the afternoon of December 26, 2020
定量研究案例
一篇转帖的文章,作者真的很强大!
本文的缘起:
当初一个舍友来自西部地区,从没学过计量(OLS都没学过)。但毕业论文老板要求用数据说话,发愁。我于心不忍,告诉她:我每天晚上自习回来,睡觉前花10分钟给你讲解一下STATA的操作和出来的各项结果意义。第一天,我讲了OLS。画了一张散点图和一根直线,用了1分钟就让她完全理解了OLS的精髓,这是用来干啥的。后面9分钟讲解了STATA的操作和OLS的各种变种。结果只一个星期,讲完五种方法(下面会介绍),她信心大增。后来一下子发了好几篇CSSCI,计量做的天花乱坠,让人误以为是一个大师。毕业论文也顺利通过。她说我的方法是当今世界上最快的计量速成法。她说,以后有时间要好好看看计量书,打打基础。我推荐她读伍德里奇的那本现代观点。但她论文发表了好多篇,至今还没看那本书。问其原因:“看了一下OLS,跟你讲的没啥区别,就是多了些推导。那
些推导看不看都不影响我用软件。现在没空看,先发论文再说。”
我笑其太浮躁。但后来想想,这种学习方法不一定适合所有人,但或许适合一部分人。因此有必要写出来让这部分人都有所收获,不会因为发不了CSSCI而担忧,不会因为毕业论文不会做计量而担忧。因此有了本文。你是不是属于这样的人?请看下面:
本文的目标人:
1、不懂计量的人;
2、想学计量却苦于缺乏时间的人;
3、想学计量却看不懂、推导不了那些恐怖矩阵的人,也就是不想看推导过程,也想发论文的人。
4、不想看计量书,却想写计量论文,发几篇CSSCI,尽快毕业的人。
5、所有想速成的人。
但是目标人一定要能看懂STATA软件操作手册的人(或者其他软件操作手册)。如果你不认得手册上的字,不要来告诉我。我也不认得。如果你能到一个懂STATA、EVIEWS的人给你讲解一下,那么你看不懂手册也无所谓。
本文的目标:不看计量推导、不看计量书籍就能发计量论文,而且是大规模批量生产计量论文,甚至是发经济研究和管理世界。
目标能否实现:取决于你能否掌握本黑客教程的内容,能否阅读软件手册。
申明:不是教你如何抄袭作弊,而是教你写计量论文的方法和捷径。
一、计量论文的两大要点是什么?
bootstrap检验方法二、如何判断计量论文的水平高低?
三、做计量的“大杀器”有哪些?
四、瞎倒腾计量的秘诀
五、大规模发CSSCI的建议
一、计量论文的两大要点是什么?
1、计量模型的建立(就是那个方程,表达什么经济含义要知道);
2、模型中的系数如何估计出来(关键在于估计方法的选择)。
第1个要点涉及你论文主题。你一般要想用数据检验某种经济关系,根据这种经济关系来建立计量模型。如果你不知道要检验什么经济关系,那我劝你就此打住。你发不了经济研究了。
第2个要点。千万种方法的出现,目的都是要把那个系数给估计出来。不同估计方法的估计效果好坏,就是根据各种统计量来判断。如果能选择一种最合适你数据的估计方法,那么这论文基本就成了。
二、如何判断计量论文的水平高低?
掌握了上面两个要点,只是说你能写出一篇计量论文,并不是说能写出一篇高水平的论文。水平的高低在于你处理这两个要点时水平的高低。下面仔细讲解。
如果只是为了写计量论文,只需要“知其然”即可。没有人会因为不会推导OLS估计量而对软件里面出来的结果不知所措。这条途径,最快捷的走法是一个懂的人,把结果里面的各种东西所表示的意思给你讲一遍,每个东西要注意什么。基本就可以了。在一般的CSSCI上发表论文没有什么问题。如果不到人,就看STATA的手册,里面的例子会讲解每个指标参数统计量的含义。这样慢一点,但效果很好,而且也能成为STATA专家。STATA手册比高级计量教材看起来轻松多了,就是告诉你怎么操作软件,然后得到什么结果的。
计量论文中的估计问题,最关键的事情,不是能推导估计量,而是在STATA里面选择一个“合适”的方法估计出来。然后解释结果的经济意义。而计量水平的高低,不在于方法的复杂性,而在于方法的合适程度。因此高水平的计量论文,不必要求作者掌握高深的计量推导,而在于“选择”的技巧。每种计量方法,都有优劣。所谓用人之长,容人之短。水平高的人,能够选择以其之长,攻它之短。同时又能隐藏计量方法内在的拙劣。
其实,计量论文的水平主要决定于论文的主题的重要性。这个话题大家都很关心,就很重要,发表就很容易。所以,你会发现国际顶级期刊上一些计量论文所用的方法很简单。这些论文能发表,主要是他讨论的问题很重要(这涉及第一个要点),采用的方法即使有缺
陷,也无伤大雅。如果问题不是非常重要,只是有新意,但是估计方法比较合适,也能发一个中上等期刊。如果问题属于鸡毛蒜皮之类,那就只能诉诸于超级复杂的计量方法,祈求审稿人看论文时,方法还没看完就已经累得半死,再也没有心情来思考你的问题的重要性,然后也能通过了。
三、做计量的“大杀器”有哪些?
所谓的大杀器,不是指超级复杂的计量方法,而是指这种东西一旦用起来,一般不会有人来攻击。所谓的一招毙命,毙了审稿人的命。计量方法很多,可以说满天飞。但是,真正有价值的方法,被人公认为具有一定可信度的方法(就是所谓的“大杀器”),只有5种。并不是你所看到的所有的方法都有人信。这点大部分初学计量的人都不会意识到。看到书上介绍一个方法,就认为这是一个好方法。其实不是。书上很多方法的介绍,仅仅是出于理论推演的需要,并不是实际研究中都能用的。你如果查阅一下国际上关于经验研究类的论文,会发现大部分论文所用方法无非是:
1、简单回归;
2、工具变量回归;
3、面板固定效应回归;
4、差分再差分回归(difference in differnece);
5、狂忒二回归(Quantile)。
大杀器就这几种,破绽最少,公认度最高,使用最广泛。真是所谓的老少皆宜、童叟无欺。其他的方法都不会更好,只会招致更多的破绽。你在STATA里面还可以看到无数的其他方法,例如GMM、多层次分析法等。这个GMM实在是一个没有用的忽悠,他还分为diffGMM和系统GMM。其关键思想是当你不到工具变量时,用滞后项来做工具变量。结果你会发现令人崩溃的情况:不同滞后变量的阶数,严重影响你的结果,更令人崩溃的是,一些判断估计结果优劣的指标会失灵。这完全是胡搞!这GMM的唯一价值在于理论价值,而不在于实践价值。你如果要玩计量,你就可以在GMM的基础上进行修改(玩计量的方法后面讲)。
有人会问:简单回归会不会太简单?我只能说你真逗。STATA里面那么多选项,你加就是了。什么异方差、什么序列相关,一大堆尽管加。如果你实在无法确定是否有异方差和序
列相关,那就把选项都加上。反正如果没有异方差,结果是一样的。有异方差,软件就自动给你纠正了。这不很爽嘛。如果样本太少,你还能加一个选项:bootstrap来估计方差。你看爽不爽!bootstrap就是自己提靴子的方法。自己把脚抬起来扛在肩上走路,就这么牛。这个bootstrap就是用30个样本能做到30万样本那样的效果。有吸引力吧。你说这个简单回归简单还是不简单!很简单,就是加选项。可是,要理论推导,就不简单了。我估计国内能推导的没几个人。经济研究上论文作者,最多只有5%的人能推导,而且大部分是海龟。所以,你不需要会推导,也能把计量做的天花乱坠。
工具变量(IV)回归,这不用说了,有内生性变量,就用这个吧。一旦有内生性变量,你的估计就有问题了。国际审稿人会拼了老命整死你。国内审稿人大部分不懂这东西(除了经济研究这类刊物的部分审稿人以外)。工具变量的选择只要掌握一个关键点就行:一个和内生性变量有数据相关的,但是没有因果关系的东西,这就是你的IV了。例如贸易量如果是内生的,那么你地理距离作为IV。北京到纽约的距离,那是自然形成的,没人认为是由贸易量导致的,这就是没有因果关系。但是你会发现两者在数据上具有相关性。这就很好。这种数据相关性越强,IV的效果就越好。就这么一段话,IV变量回归就讲完了。在STATA里面,你直接把原回归方程写出来,然后把IV填进去就可以了,回车就得到你的结
果。关键是你不一定能到这样的工具变量。你能到,这个工具也不大能用。不过要注意,IV不灵不代表你不能发表。经济研究上还不是发了一大堆这样的论文。所以,你只要到一个IV,效果不是差的太离谱,一般都能发。当然不能发国际一流了。国内是没问题。国内审稿人没人会重复你的结果看看是否有问题,因此你说这个IV效果已经是最好的了,世界上还不到第二个比这个更好的了,审稿人也没的话说。就发表呗!如果审稿人说,另外一个IV效果可能要比你的好。那你就采纳他的建议用他的IV(尽管他的建议会更差),然后感谢他一下。第二次审稿,难道他还会说自己上次是胡说八道?所以就发表了,哈哈哈哈!
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。
发表评论