如何⽤python将两个⽂件夹合并⾄另⼀个⽂件夹(制作数据集)
如何⽤python将两个⽂件夹合并⾄另⼀个⽂件夹(制作数据集)
此操作⽬的是为了制作⾃⼰的数据集,深度学习框架进⾏数据准备,此操作步骤包括对⽂件夹进⾏操作,将两个⽂件夹合并⾄另⼀个⽂件夹
该实例为⼀个煤矿⼯⼈脸识别的案例;⾸先原始数据集(简化版的数据集旨在说明数据准备过程)如下图所⽰:
该数据集只有三个⼈的数据,A01代表⼯⼈甲的煤矿下的照⽚,B01代表⼯⼈甲下矿前的照⽚,同理A02、B02代表⼯⼈⼄的矿下、矿上的照⽚数据。。。如下图所⽰
矿下
矿上
开始制作数据集:
⾸先建⽴训练集(0.7)和测试集(0.3),即建⽴⼀个空⽩⽂件夹
将该⽂件夹分为四个⼩⽂件夹(空),train代表训练集,val代表测试集,valb代表矿井下的测试集,vall代表矿井上的测试集,
注:后边两个测试集可有可⽆
最终制作的数据集如下所⽰:
下⾯为所有的程序详解
#导⼊⼀些进⾏该操作需要的库
import numpy as np
import os
import random
import shutil
path=r'C:\Users\Administrator.SKY-20180518VHY\Desktop\rx\ore'#原始数据集的路径
data=os.listdir(path)
#listdir该操作([添加链接描述](blog.csdn/weixin_40123108/article/details/83340744))在我的上篇博客中有所介绍,此操作能读取的内容为A01、A02、A03、B01、B02、B03这些⽂件夹
#print(data)
root=path#复制原始数据路径path
读取⽂件夹 A01、A02、A03、存⼊c列表中B01、B02、B03,将其存⼊d列表中
c=[]
d=[]#创建两个空列表
for i in range(len(data)):
a=data[i][0]
if (a=='A'):
c.append(data[i])
else:
d.append(data[i])
#print(d)
导⼊路径四个空⽂件夹的路径
train_root='C:\\Users\\Administrator.SKY-20180518VHY\\Desktop\\myself\\train' val_root='C:\\Users\\Administrator.SKY-20180518VHY\\Desktop\\myself\\val'
vall_root='C:\\Users\\Administrator.SKY-20180518VHY\\Desktop\\myself\\valb' valb_root='C:\\Users\\Administrator.SKY-20180518VHY\\Desktop\\myself\\vall'
for i in range(len(c)):
qqq=ists(train_root+'/'+c[i][1:])
if (not qqq):
os.mkdir(train_root+'/'+c[i][1:])
qq=ists(val_root+'/'+c[i][1:])
if (not qq):
os.mkdir(val_root+'/'+c[i][1:])
qq=ists(vall_root+'/'+c[i][1:])
if (not qq):
os.mkdir(vall_root+'/'+c[i][1:])
qq=ists(valb_root+'/'+c[i][1:])
if (not qq):
os.mkdir(valb_root+'/'+c[i][1:])
#f=[]
#g=[]
aq='C:\\Users\\Administrator.SKY-20180518VHY\\Desktop\\rx\\ore\\'
train_root1='C:\\Users\\Administrator.SKY-20180518VHY\\Desktop\\myself\\train\\' val_root1='C:\\Users\\Administrator.SKY-20180518VHY\\Desktop\\myself\\val\\' vall_root1='C:\\Users\\Administrator.SKY-20180518VHY\\Desktop\\myself\\valb\\' valb_root1='C:\\Users\\Administrator.SKY-20180518VHY\\Desktop\\myself\\vall\\' for i in range(len(c)):
a=c[i]
data_0=os.listdir(aq+a)
# f.append(data_0)
# g.append(aq+a)
#print(f)
#print(g)
random.shuffle(data_0)#打乱A中数据
for j in range(len(d)):
b=d[j]
if(a[1:]==b[1:]):
data_1=os.listdir(aq+b)
#print(aq+b);
random.shuffle(data_1)
#print(data_1)
#print(data_0,data_1)
for z in range(len(data_0)):
#print(z)
pic_path=aq+a+'/'+data_0[z]
if z<int(len(data_0)*0.7):
obj_path=train_root1+a[1:]+'/'+data_0[z]
else:
obj_path=val_root1+a[1:]+'/'+data_0[z]
obl_path=vall_root1+a[1:]+'/'+data_0[z]
#print(len(data_0),len(data_0)*0.7)
#if (ists(pic_path)):
for z in range(len(data_1)):
pic_path=aq+b+'/'+data_1[z]
if z<int(len(data_1)*0.7):
obj_path=train_root1+b[1:]+'/'+data_1[z]
else:
obj_path=val_root1+b[1:]+'/'+data_1[z]
obl_path=valb_root1+a[1:]+'/'+data_1[z]
#if (ists(pic_path)):
将数据送⼊pytorch中,对数据进⾏迭代python怎么读文件夹下的文件夹
from __future__ import print_function, division
import torch
as nn
import torch.optim as optim
from torch.optim import lr_scheduler
import numpy as np
import torchvision
from torchvision import datasets, models, transforms
import matplotlib.pyplot as plt
import time
import os
import copy
import math
functional as F
D=299
data_transforms = {
'train': transforms.Compose([
# transforms.RandomResizedCrop(D),
transforms.Resize(D),
transforms.RandomCrop(D),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
'val': transforms.Compose([
transforms.Resize(D),
transforms.CenterCrop(D),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
}
data_dir = r'C:\Users\Administrator.SKY-20180518VHY\Desktop\myself'
image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x),
data_transforms[x])
for x in ['train', 'val']}
dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=200, shuffle=True, num_workers=4)
for x in ['train', 'val']}
dataset_sizes = {x: len(image_datasets[x]) for x in ['train', 'val']}
class_names = image_datasets['train'].classes
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
#print(image_datasets['train'][0])
img, label = image_datasets['val'][11]
print(label)#输出为2即第三类
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。
发表评论