一、傅立叶变化的原理;
(1)原理
正交级数的展开是其理论基础!将一个在时域收敛的函数展开成一系列不同频率谐波的叠加,从而达到解决周期函数问题的目的。在此基础上进行推广,从而可以对一个非周期函数进行时频变换。
从分析的角度看,他是用简单的函数去逼近(或代替)复杂函数,从几何的角度看,它是以一族正交函数为基向量,将函数空间进行正交分解,相应的系数即为坐标。从变幻的角度的看,他建立了周期函数与序列之间的对应关系;而从物理意义上看,他将信号分解为一些列的简谐波的复合,从而建立了频谱理论。
当然Fourier积分建立在傅氏积分基础上,一个函数除了要满足狄氏条件外,一般来说还要在积分域上绝对可积,才有古典意义下的傅氏变换。引入衰减因子e^(-st),从而有了Laplace变换。(好像走远了)。
(2)计算方法
连续傅里叶变换将平方可积的函数f(t)表示成复指数函数的积分或级数形式。
这是将频率域的函数F(ω)表示为时间域的函数f(t)的积分形式。
连续傅里叶变换的逆变换 (inverse Fourier transform)为
即将时间域的函数f(t)表示为频率域的函数F(ω)的积分。
一般可称函数f(t)为原函数,而称函数F(ω)为傅里叶变换的像函数,原函数和像函数构成一个傅里叶变换对(transform pair)。
二、傅立叶变换的应用;
DFT 在诸多多领域中有着重要应用,下面仅是颉取的几个例子。需要指出的是,所有DFT 的实际应用都依赖于计算离散傅里叶变换及其逆变换的快速算法,即快速傅里叶变换(快速傅里叶变换(即FFT )是计算离散傅里叶变换及其逆变换的快速算法。)。
(1)、频谱分析
DFT 是连续傅里叶变换的近似。因此可以对连续信号x(t)均匀采样并截断以得到有限长的离散序列,对这一序列作离散傅里叶变换,可以分析连续信号x(t)频谱的性质。前面还提到DFT 应用于频谱分析需要注意的两个问题:即采样可能导致信号混叠和截断信号引起的频谱泄漏。可以通过选择适当的采样频率(见奈奎斯特频率)消减混叠。选择适当的序列长度并加窗可以抑制频谱泄漏。
(2)、数据压缩
由于人类感官的分辨能力存在极限,因此很多有损压缩算法利用这一点将语音、音频、图像、视频等信号的高频部分除去。高频信号对应于信号的细节,滤除高频信号可以在人类感官可以接受的范围内获得很高的压缩比。这一去除高频分量的处理就是通过离散傅里叶变换完成的。将时域或空域的信号转换到频域,仅储存或传输较低频率上的系数,在解压缩端采用逆变换即可重建信号。
(3)、OFDM
OFDM (正交频分复用)在宽带无线通信中有重要的应用。这种技术将带宽为N 个等间隔的子载波,可以证明这些子载波相互正交。尤其重要的是,OFDM 调制可以由IDFT 实现,而解调可以由DFT 实现。OFDM 还利用DFT 的移位性质,在每个帧头部加上循环前缀(Cyclic Prefix ),使得只要信道延时小于循环前缀的长度,就能消除信道延时对传输的影响。
三、傅里叶变换的本质;
傅里叶变换的公式为
dt e t f F t j ⎰+∞∞--=
ωω)()(
可以把傅里叶变换也成另外一种形式:
t j e t f F ωπ
ω),(21)(= 可以看出,傅里叶变换的本质是内积,三角函数是完备的正交函数集,不同频率的三角函数的之间的内积为0,只有频率相等的三角函数做内积时,才不为0。
)(2,21)(2121Ω-Ω==⎰Ω-ΩΩΩπδdt e e e t j t j t j
下面从公式解释下傅里叶变换的意义
因为傅里叶变换的本质是内积,所以f(t)和t j e ω求内积的时候,只有f(t)中频率为ω的分量才会有内积的结果,其余分量的内积为0。可以理解为f(t)在t j e ω上的投影,积分值是时间从负无穷到正无穷的积分,就是把信号每个时间在ω的分量叠加起来,可以理解为f(t)在t j e ω上的投影的叠加,叠加的结果就是频率为ω的分量,也就形成了频谱。
傅里叶逆变换的公式为
ωωπωd e F t f t j ⎰+∞∞
-=)(21)( 下面从公式分析下傅里叶逆变换的意义
傅里叶逆变换就是傅里叶变换的逆过程,在)(ωF 和t j e ω-求内积的时候,)(ωF 只有t 时刻的分量内积才会有结果,其余时间分量内积结果为0,同样积分值是频率从负无穷到正无穷的积分,就是把信号在每个频率在t 时刻上的分量叠加起来,叠加的结果就是f(t)在t 时刻的值,这就回到了我们观察信号最初的时域。matlab求傅里叶变换
对一个信号做傅里叶变换,然后直接做逆变换,这样做是没有意义的,在傅里叶变换和傅里叶逆变换之间有一个滤波的过程。将不要的频率分量给滤除掉,然后再做逆变换,就得到了想要的信号。比如信号中掺杂着噪声信号,可以通过滤波器将噪声信号的频率给去除,再做傅里叶逆变换,就得到了没有噪声的信号。
优点:频率的定位很好,通过对信号的频率分辨率很好,可以清晰的得到信号所包含的频率成分,也就是频谱。
缺点:因为频谱是时间从负无穷到正无穷的叠加,所以,知道某一频率,不能判断,该频率的时间定
位。不能判断某一时间段的频率成分。
例子: 平稳信号:x(t)=cos(2*pi*5*t)+cos(2*pi*10*t)+cos(2*pi*20*t)+cos(2*pi*50*t)
傅里叶变换的结果:
由于信号是平稳信号,每处的频率都相等,所以看不到傅里叶变换的缺点。对于非平稳信号:信号是余弦信号,仍然有四个频率分量
傅里叶变换的结果:
由上图看出知道某一频率,不能判断,该频率的时间定位。不能判断某一时间段的频率成分。
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。
发表评论