第十四章《一次函数》全章复习
一、归纳知识点:
(一)函数
1、变量:在一个变化过程中可以取不同数值的量。常量:在一个变化过程中只能取同一数值的量。
2、函数:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就把x称为自变量,y是x的函数。
注意:判断Y是否为X的函数,只要看X取值确定的时候,Y是否有唯一确定的值与之对应
3、确定函数自变量取值范围的方法:
(1)关系式为整式时,自变量取值范围为:一切实数;
(2)关系式含有分式时,自变量取值范围为:分式的分母不等于零;
(3)关系式含有二次根式时,自变量取值范围为:被开放方数大于等于零;
(4)实际问题中,自变量取值范围还要和实际情况相符合,使之有意义。
4、函数的图像
一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.
5、描点法画函数图形的一般步骤:列表-----描点-----连线。
6、函数的表示方法及其优点:
列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。
解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。
图象法:形象直观,但只能近似地表达两个变量之间的函数关系
(二)一次函数
1、一次函数的定义
一般地,形如(,是常数,且)的函数,叫做一次函数,其中x是自变量。当时,一次函数,又叫做正比例函数。
⑴一次函数的解析式的形式是,要判断一个函数是否是一次函数,就是判断是否能化成以上形式.
⑵当,时,仍是一次函数. ⑶当,时,它不是一次函数.
⑷正比例函数是一次函数的特例,一次函数包括正比例函数.
2、正比例函数及性质
一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数,其中k叫做比例系数.
注:正比例函数一般形式 y=kx (k不为零) k不为零 x指数为1 b取零
当k>0时,直线y=kx经过三、一象限,从左向右上升,即随x的增大y也增大;当k<0时,直线y=kx经过二、四象限,从左向右下降,即随x增大y反而减小.
(1)解析式:y=kx(k是常数,k≠0) (2)必过点:(0,0)、(1,k)
(2)走向:k>0时,图像经过一、三象限;k<0时,图像经过二、四象限
(3)增减性:k>0,y随x的增大而增大;k<0,y随x增大而减小
(4)倾斜度:|k|越大,越接近y轴;|k|越小,越接近x轴
3、一次函数及性质
一般地,形如y=kx+b(k,b是常数,k≠0),那么y叫做x的一次函数.当b=0时,y=kx+b即y=kx,所以说正比例函数是一种特殊的一次函数.
注:一次函数一般形式 y=kx+b (k不为零) k不为零 x指数为1 b取任意实数
一次函数y=kx+b的图象是经过(0,b)和(-,0)两点的一条直线,我们称它为直线y=kx+b,它可以看作由直线y=kx平移|b|个单位长度得到.(当b>0时,向上平移;当b<0时,向下平移)
(1)解析式:y=kx+b(k、b是常数,k0) (2)必过点:(0,b)和(-,0)
(3)走向: k>0,图象经过第一、三象限;k<0,图象经过第二、四象限
b>0,图象经过第一、二象限;b<0,图象经过第三、四象限
直线经过第一、二、三象限 直线经过第一、三、四象限
直线经过第一、二、四象限 直线经过第二、三、四象限
(4)增减性: k>0,y随x的增大而增大;k<0,y随x增大而减小.
(5)倾斜度:|k|越大,图象越接近于y轴;|k|越小,图象越接近于x轴.
(6)图像的平移: 当b>0时,将直线y=kx的图象向上平移b个单位;
一次函数与正比例函数概念当b<0时,将直线y=kx的图象向下平移b个单位.
一次 函数 | ||||||
, 符号 | ||||||
图象 | ||||||
性质 | 随的增大而增大 | 随的增大而减小 | ||||
4、一次函数y=kx+b的图象的画法.
根据几何知识:经过两点能画出一条直线,并且只能画出一条直线,即两点确定一条直线,所以画一次函数的图象时,只要先描出两点,再连成直线即可.一般情况下:是先选取它与两坐标轴的交点:(0,b),.即横坐标或纵坐标为0的点.
b>0 | b<0 | b=0 | |
k>0 | 经过第一、二、三象限 | 经过第一、三、四象限 | 经过第一、三象限 |
图象从左到右上升,y随x的增大而增大 | |||
k<0 | 经过第一、二、四象限 | 经过第二、三、四象限 | 经过第二、四象限 |
图象从左到右下降,y随x的增大而减小 | |||
5、正比例函数与一次函数之间的关系
一次函数y=kx+b的图象是一条直线,它可以看作是由直线y=kx平移|b|个单位长度而得到(当b>0时,向上平移;当b<0时,向下平移)
正比例函数 | 一次函数 | |||
概 念 | 一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数,其中k叫做比例系数 | 一般地,形如y=kx+b(k,b是常数,k≠0),那么y叫做x的一次函数.当b=0时,是y=kx,所以说正比例函数是一种特殊的一次函数. | ||
自变量 范 围 | X为全体实数 | |||
图 象 | 一条直线 | |||
必过点 | (0,0)、(1,k) | (0,b)和(-,0) | ||
走 向 | k>0时,直线经过一、三象限; k<0时,直线经过二、四象限 | k>0,b>0,直线经过第一、二、三象限 k>0,b<0直线经过第一、三、四象限 k<0,b>0直线经过第一、二、四象限 k<0,b<0直线经过第二、三、四象限 | ||
增减性 | k>0,y随x的增大而增大;(从左向右上升) k<0,y随x的增大而减小。(从左向右下降) | |||
倾斜度 | |k|越大,越接近y轴;|k|越小,越接近x轴 | |||
图像的 平 移 | b>0时,将直线y=kx的图象向上平移个单位; b<0时,将直线y=kx的图象向下平移个单位. | |||
6、直线()与()的位置关系
(1)两直线平行且 (2)两直线相交
(3)两直线重合且 (4)两直线垂直
7、用待定系数法确定函数解析式的一般步骤:
(1)根据已知条件写出含有待定系数的函数关系式;
(2)将x、y的几对值或图象上的几个点的坐标代入函数关系式中得到以待定系数为未知数
的方程;
(3)解方程得出未知系数的值;
(4)将求出的待定系数代回所求的函数关系式中得出所求函数的解析式.
二、例题点睛
例1已知:一次函数的图象经过点(2,1)和点(-1,-3).(1)求此一次函数的解析式;
(2)求此一次函数与x轴、y轴的交点坐标以及该函数图象与两坐标轴所围成的三角形的面积;
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。
发表评论