计算机二级考试《公共基础知识》考点
计算机二级考试《公共基础知识》考点
同学们在复习计算机二级考试时,除了对自己选考科目备考外,还要注意公共基础知识的复习,下面店铺为大家搜索整理了关于《公共基础知识》考点,欢迎参考学习,希望对大家有所帮助!想了解更多相关信息请持续关注我们店铺!
(一)算法
1.算法的基本特征:可行性、确定性、有穷性、拥有足够的情报。
2.算法的基本要素:
(1)算法中对数据的运算和操作
一个算法由两种基本要素组成:一是对数据对象的运算和操作;二是算法的控制结构。
在一般的计算机系统中,基本的运算和操作有以下4类:算术运算、逻辑运算、关系运算和数据传输。
(2)算法的控制结构:算法中各操作之间的执行顺序称为算法的控制结构。
描述算法的工具通常有传统流程图、N-S结构化流程图、算法描述语言等。一个算法一般都可以用顺序、选择、循环3种基本控制结构组合而成。
3.算法的时间复杂度
算法的时间复杂度是指执行算法所需要的计算工作量。
同一个算法用不同的语言实现,或者用不同的编译程序进行编译,或者在不同的计算机上运行,效率均不同。这表明使用绝对的时间单位衡量算法的效率是不合适的。撇开这些与计算机硬件、软件有关的因素,可以认为一个特定算法运行工作量的大小,只依赖于问题的规模(通常用整数n表示),它是问题规模的函数。即
算法的工作量=f(n)
4.算法的空间复杂度
算法的空间复杂度是指执行这个算法所需要的内存空间。
一个算法所占用的存储空间包括算法程序所占的空间、输入的初始数据所占的存储空间以及算法执行过程中所需要的额外空间。其中额外空间包括算法程序执行过程中的工作单元以及某种数据结构所需要的附加存储空间。如果额外空间量相对于问题规模来说是常数,则称该算法是原地工作的。在许多实际问题中,为了减少算法所占的存储空间,通常采用压缩存储技术,以便尽量减少不必要的额外空间。
疑难解答:算法的工作量用什么来计算?
算法的工作量用算法所执行的基本运算次数来计算,而算法所执行的基本运算次数是问题规模的函数,即算法的工作量=f(n),其中n是问题的规模。
(二)数据
(1)数据集合中个数据元素之间所固有的逻辑关系,即数据的逻辑结构;
(2)在对数据元素进行处理时,各数据元素在计算机中的存储关系,即数据的存储结构;
(3)对各种数据结构进行的运算。
数据:是对客观事物的符号表示,在计算机科学中是指所有能输入到计算机中并被计算机程序处理的符号的总称。
二叉树的基本性质数据元素:是数据的基本单位,在计算机程序中通常作为一个整体进行考虑和处理。外语学习网
数据对象:是性质相同的数据元素的集合,是数据的一个子集。
数据的逻辑结构是对数据元素之间的逻辑关系的描述,它可以用一个数据元素的集合和定义在此集合中的若干关系来表示。数据的逻辑结构有两个要素:一是数据元素的集合,通常记为D;二是D上的关系,它反映了数据元素之间的前后件关系,通常记为R。一个数据结构可以表示成
B=(D,R)
其中B表示数据结构。为了反映D中各数据元素之间的前后件关系,一般用二元组来表示。
数据的逻辑结构在计算机存储空间中的存放形式称为数据的存储结构(也称数据的物理结构)。
由于数据元素在计算机存储空间中的位置关系可能与逻辑关系不同,因此,为了表示存放在计算机存储空间中的各数据元素之间的逻辑关系(即前后件关系),在数据的存储结构中,不仅要存放各数据元素的信息,还需要存放各数据元素之间的前后件关系的信息。
一种数据的逻辑结构根据需要可以表示成多种存储结构,常用的存储结构有顺序、链接、索引等存储结构。而采用不同的存储结构,其数据处理的效率是不同的。因此,在进行数据处理时,选择合适的存储结构是很重要的。
根据数据结构中各数据元素之间前后件关系的复杂程度,一般将数据结构分为两大类型:线性结构与非线性结构。如果一个非空的数据结构满足下列两个条件:
(1)有且只有一个根结点;
(2)每一个结点最多有一个前件,也最多有一个后件。
则称该数据结构为线性结构。线性结构又称线性表。在一个线性结构中插入或删除任何一个结点后还应是线性结构。如果一个数据结构不是线性结构,则称之为非线性结构。
疑难解答:空的数据结构是线性结构还是非线性结构?
一个空的数据结构究竟是属于线性结构还是属于非线性结构,这要根据具体情况来确定。如果对该数据结构的算法是按线性结构的规则来处理的,则属于线性结构;否则属于非线性结构。
(三)栈与树
1.栈的基本概念
栈是限定只在一端进行插入与删除的.线性表,通常称插入、删除的这一端为栈顶,另一端为栈底。当表中没有元素时称为空栈。栈顶元素总是后插入的元素,从而也是最先被删除的元素;栈底元素总是最先插入的元素,从而也是最后才能被删除的元素。栈是按照先进后出或后进先出的原则组织数据的。
2.栈的顺序存储及其运算
用一维数组S(1∶m)作为栈的顺序存储空间,其中m为最大容量。
在栈的顺序存储空间S(1∶m)中,S(bottom)为栈底元素,S(top)为栈顶元素。top=0表示栈空;top=m表示栈满。
栈的基本运算有三种:入栈、退栈与读栈顶元素。
(1)入栈运算:入栈运算是指在栈顶位置插入一个新元素。首先将栈顶指针加一(即top加1),然后将新元素插入到栈顶指针指向的位置。当栈顶指针已经指向存储空间的最后一个位置时,说明栈空间已满,不可能再进行入栈操作。这种情况称为栈上溢错误。
(2)退栈运算:退栈是指取出栈顶元素并赋给一个指定的变量。首先将栈顶元素(栈顶指针指向的元素)赋给一个指定的变量,然后将栈顶指针减一(即top减1)。当栈顶指针为0时,说明栈空,不可进行退栈操作。这种情况称为栈的下溢错误。
(3)读栈顶元素:读栈顶元素是指将栈顶元素赋给一个指定的变量。这个运算不删除栈顶元素,只是将它赋给一个变量,因此栈顶指针不会改变。当栈顶指针为0时,说明栈空,读不到栈顶元素。
小技巧:栈是按照先进后出或后进先出的原则组织数据,但是出栈方式有多种选择,在考题中经常考查各种不同的出栈方式。
树及二叉树的性质
误区警示:
满二叉树也是完全二叉树,而完全二叉树一般不是满二叉树。应该注意二者的区别。
1、树的基本概念
树(tree)是一种简单的非线性结构。在树结构中,每一个结点只有一个前件,称为父结点,没有前件的结点只有一个,称为树的根结点。每一个结点可以有多个后件,它们称为该结点的子结点。没有后件的结点称为叶子结点。
在树结构中,一个结点所拥有的后件个数称为该结点的度。叶子结点的度为0。在树中,所有结点中的最大的度称为树的度。
2、二叉树及其基本性质
(1)二叉树的定义
二叉树是一种很有用的非线性结构,具有以下两个特点:
①非空二叉树只有一个根结点;
②每一个结点最多有两棵子树,且分别称为该结点的左子树和右子树。
由以上特点可以看出,在二叉树中,每一个结点的度最大为2,即所有子树(左子树或右子树)也均为二叉树,而树结构中的每一个结点的度可以是任意的。另外,二叉树中的每个结点的子树被明显地分为左子树和右子树。在二叉树中,一个结点可以只有左子树而没有右子树,也可以只有右子树而没有左子树。当一个结点既没有左子树也没有右子树时,该结点即为叶子结点。
(2)二叉树的基本性质
二叉树具有以下几个性质:
性质1:在二叉树的第k层上,最多有2k-1(k≥1)个结点;
性质2:深度为m的二叉树最多有2m-1个结点;
性质3:在任意一棵二叉树中,度为0的结点(即叶子结点)总是比度为2的结点多一个。
二叉树的遍历
在遍历二叉树的过程中,一般先遍历左子树,再遍历右子树。在先左后右的原则下,根据访问根结点的次序,二叉树的遍历分为三类:前序遍历、中序遍历和后序遍历。
(1)前序遍历:先访问根结点、然后遍历左子树,最后遍历右子树;并且,在遍历左、右子树时,仍然先访问根结点,然后遍历左子树,最后遍历右子树。
(2)中序遍历:先遍历左子树、然后访问根结点,最后遍历右子树;并且,在遍历左、右子树时,仍然先遍历左子树,然后访问根结点,最后遍历右子树。
(3)后序遍历:先遍历左子树、然后遍历右子树,最后访问根结点;并且,在遍历左、右子树时,仍然先遍历左子树,然后遍历右子树,最后访问根结点。
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。
发表评论