十进制如何换算二进制、八进制、十六进制?
你以十进制的数除以你所要转换的进制数,把每次除得的余数记在旁边,所得的商数继续除以进制数,直到余数为0时止.例如你要把100转换成八进制: 100/(余数为4); 12/(余数为4); 1/(余数为1); 然后把相应的余数从低向高顺着写出来,如上的为144,此即为100的八进制表示形式. 十进制转换为十六进制与二进制与前面的转化为八进制相同,如100转换为十六进制: 100/(余数为4); 6/(余数为6); 则以十六进制表示的100形式为64; 100转换为二进制: 100/(余数为0); 50/(余数为0); 25/(余数为1); 12/(余数为0); 6/(余数为0); 3/(余数为1); 1/(余数为1); 所以100的二进制表示形式为1100100; 十六进制,二进制与八进制之间的转换可以通过补位来实现如: 二进制1100100可化为(001)(100)(100)=八进制144 =二进制(0110)(0100)=十六进制64; 即以二进制数分成3位一组(八进制)或四位一组(十六进制),不够位数的时候在二进制数前补0. 进制与进制之间的转换 先来了解几个概念:进制,基数,权值. 10进制:有0~9十个数字,逢十进一 8进制:有0~7八个数字,逢八进一 2进制:有0,1两个数字,逢二进一 16进制:有0~9,A,B,C,D,E,F十六个数字,逢十六进一 -------------------------------------------------------------------------------- 逢n进一的n就是基数,基数为几就有几个数字,如二进制基数为二,则有0,1两个;八进制基数为八有0,1,2,3,4,5,6,7八个。总之从0开始,最后一位位n-1.而十六进制由于超过十,所以从十开始为A(10),B,C,D,E,F(15). 所谓的权可以这样理解,一个数的每位都有一个权值m,并且权值为位数减一,如个位上的数的权值为0(位数1-1=0),十位为1(2-1=1). 二进制数转换为十进制数 二进制数第0位的权值是2的0次方,第1位的权值是2的1次方…… 所以,设有一个二进制数:0110 0100,转换为10进制为: 下面是竖式: 0110 0100 换算成 十进制 第0位 0 * 20 = 0 第1位 0 * 21 = 0 第2位 1 * 22 = 4 第3位 0 * 23 = 0 第4位 0 * 24 = 0 第5位 1 * 25 = 32 第6位 1 * 26 = 64 第7位 0 * 27 = 0 + --------------------------- 100 用横式计算为: 0 * 20 + 0 * 21 + 1 * 22 + 1 * 23 + 0 * 24 + 1 * 25 + 1 * 26 + 0 * 27 = 100 0乘以多少都是0,所以我们也可以直接跳过值为0的位: 1 * 22 + 1 * 23 + 1 * 25 + 1 * 26 = 100 6.2.2 八进制数转换为十进制数 八进制就是逢8进1。 八进制数采用 0~7这八数来表达一个数。 八进制数第0位的权值为8的0次方,第1位权值为8的1次方,第2位权值为8的2次方…… 所以,设有一个八进制数:1507,转换为十进制为: 用竖式表示: 1507换算成十进制。 第0位 7 * 80 = 7 第1位 0 * 81 = 0 第2位 5 * 82 = 320 第3位 1 * 83 = 512 + -------------------------- 839 同样,我们也可以用横式直接计算: 7 * 80 + 0 * 81 + 5 * 82 + 1 * 83 = 839 结果是,八进制数 1507 转换成十进制数为 839 十进制数转换到二、八、十六进制数 10进制数转换为2进制数 给你一个十进制,比如:6,如果将它转换成二进制数呢? 10进制数转换成二进制数,这是一个连续除2的过程: 把要转换的数,除以2,得到商和余数, 将商继续除以2,直到商为0。最后将所有余数倒序排列,得到数就是转换结果。 听起来有些糊涂?我们结合例子来说明。比如要转换6为二进制数。 “把要转换的数,除以2,得到商和余数”。 那么: 二进制与十六进制的转换表要转换的数是6, 6 ÷ 2,得到商是3,余数是0。(不要告诉我你不会计算6÷3!) “将商继续除以2,直到商为0……” 现在商是3,还不是0,所以继续除以2。 那就: 3 ÷ 2, 得到商是1,余数是1。 “将商继续除以2,直到商为0……” 现在商是1,还不是0,所以继续除以2。 那就: 1 ÷ 2, 得到商是0,余数是1 (拿笔纸算一下,1÷2是不是商0余1!) “将商继续除以2,直到商为0……最后将所有余数倒序排列” 好极!现在商已经是0。 我们三次计算依次得到余数分别是:0、1、1,将所有余数倒序排列,那就是:110了! 6转换成二进制,结果是110。 把上面的一段改成用表格来表示,则为: 被除数 计算过程 商 余数 6 6/2 3 0 3 3/2 1 1 1 1/2 0 1 (在计算机中,÷用 / 来表示) 如果是在考试时,我们要画这样表还是有点费时间,所更常见的换算过程是使用下图的连除: (图:1) 请大家对照图,表,及文字说明,并且自已拿笔计算一遍如何将6转换为二进制数。 说了半天,我们的转换结果对吗?二进制数110是6吗?你已经学会如何将二进制数转换成10进制数了,所以请现在就计算一下110换成10进制是否就是6。 6.3.2 10进制数转换为8、16进制数 非常开心,10进制数转换成8进制的方法,和转换为2进制的方法类似,惟一变化:除数由2变成8。 来看一个例子,如何将十进制数120转换成八进制数。 用表格表示: 被除数 计算过程 商 余数 120 120/8 15 0 15 15/8 1 7 1 1/8 0 1 120转换为8进制,结果为:170。 非常非常开心,10进制数转换成16进制的方法,和转换为2进制的方法类似,惟一变化:除数由2变成16。 同样是120,转换成16进制则为: 被除数 计算过程 商 余数 120 120/16 7 8 7 7/16 0 7 120转换为16进制,结果为:78。 请拿笔纸,采用(图:1)的形式,演算上面两个表的过程。 6.4 二、十六进制数互相转换 二进制和十六进制的互相转换比较重要。不过这二者的转换却不用计算,每个C,C++程序员都能做到看见二进制数,直接就能转换为十六进制数,反之亦然。 我们也一样,只要学完这一小节,就能做到。 首先我们来看一个二进制数:1111,它是多少呢? 你可能还要这样计算:1 * 20 + 1 * 21 + 1 * 22 + 1 * 23 = 1 * 1 + 1 * 2 + 1 * 4 + 1 * 8 = 15。 然而,由于1111才4位,所以我们必须直接记住它每一位的权值,并且是从高位往低位记,:8、4、2、1。即,最高位的权值为23 = 8,然后依次是 22 = 4,21=2, 20 = 1。 记住8421,对于任意一个4位的二进制数,我们都可以很快算出它对应的10进制值。 下面列出四位二进制数 xxxx 所有可能的值(中间略过部分) 仅4位的2进制数 快速计算方法 十进制值 十六进值 1111 = 8 + 4 + 2 + 1 = 15 F 1110 = 8 + 4 + 2 + 0 = 14 E 1101 = 8 + 4 + 0 + 1 = 13 D 1100 = 8 + 4 + 0 + 0 = 12 C 1011 = 8 + 4 + 0 + 1 = 11 B 1010 = 8 + 0 + 2 + 0 = 10 A 1001 = 8 + 0 + 0 + 1 = 10 9 .... 0001 = 0 + 0 + 0 + 1 = 1 1 0000 = 0 + 0 + 0 + 0 = 0 0 二进制数要转换为十六进制,就是以4位一段,分别转换为十六进制。 如(上行为二制数,下面为对应的十六进制): 1111 1101 , 1010 0101 , 1001 1011 F D , A 5 , 9 B 反过来,当我们看到 FD时,如何迅速将它转换为二进制数呢? 先转换F: 看到F,我们需知道它是15(可能你还不熟悉A~F这五个数),然后15如何用8421凑呢?应该是8 + 4 + 2 + 1,所以四位全为1 :1111。 接着转换 D: 看到D,知道它是13,13如何用8421凑呢?应该是:8 + 2 + 1,即:1011。 所以,FD转换为二进制数,为: 1111 1011 由于十六进制转换成二进制相当直接,所以,我们需要将一个十进制数转换成2进制数时,也可以先转换成16进制,然后再转换成2进制。 比如,十进制数 1234转换成二制数,如果要一直除以2,直接得到2进制数,需要计算较多次数。所以我们可以先除以16,得到16进制数: 被除数 计算过程 商 余数 1234 1234/16 77 2 77 77/16 4 13 (D) 4 4/16 0 4 结果16进制为: 0x4D2 然后我们可直接写出0x4D2的二进制形式: 0100 1011 0010。 其中对映关系为: 0100 -- 4 1011 -- D 0010 -- 2 同样,如果一个二进制数很长,我们需要将它转换成10进制数时,除了前面学过的方法是,我们还可以先将这个二进制转换成16进制,然后再转换为10进制。 下面举例一个int类型的二进制数: 01101101 11100101 10101111 00011011 我们按四位一组转换为16进制: 6D E5 AF 1B (小数间的转换略) 关于十进制、八进制、十六进制的详细讲解及换算 在计算机中数值是用二进制表示的,之所以要用八进制和十六进制,是因为它们与二进制之间的互相转换很方便,而且它们比长长的一串二进制数要方便书写和记忆。要把二进制转换为八进制,需要用一张表,如下: 二进制 八进制 000 0 001 1 010 2 011 3 100 4 101 5 110 6 111 7 有了这张表,就可以方便的把二进制数转换成八进制数。 首先,将一个二进制数自右向左每三位分成一段。 然后,将每一段用表中的八进制数替换,即可 例如:100101010 把它分成100 101 010 查表:100->4 101->5 010->2 替换:452 完成 将二进制转换成十六进制也要用到表 二进制 十六进制 0000 0 0001 1 0010 2 0011 3 0100 4 0101 5 0110 6 0111 7 1000 8 1001 9 1010 A 1011 B 1100 C 1101 D 1110 E 1111 F 转换方法与八进制类似,只是要将二进制数每四位分成一段 十进制与二进制的转换则比较麻烦 十进制->二进制: 用短除法将数字连续除以二,将余数由下向上排列起来,即可 二进制->十进制: 将每一位数字乘以2的(位数减一)次方,然后加起来即可 |
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。
发表评论