二进制转十进制,十进制转二进制的算法
十
表1二进制数和十进制数换算对照表
二进制 | 十进制 | 二进制 | 十进制 | 二进制 | 十进制 | 二进制 | 十进制 |
0000 | 0 | 0011 | 3 | 0110 | 6 | 1001 | 9 |
0001 | 1 | 0100 | 4 | 0111 | 7 | 1010 | 10 |
0010 | 2 | 0101 | 5 | 1000 | 二进制与十六进制之间的转换8 | 1011 | 11 |
采用“二进制数”的算术运算也比较简单,制造成本更经济。二进制的加法运算和乘法运算公式都各有四条规则:加法有0+0=0,0+1=1,1+0=1,1+1=10;乘法有0*0=0,0*1=0, 1*0=0, 1*1=1,而十进制的加法和乘法运算公式从0+0开始到9+9,从0*0开始到9*9各需规则100条。
2.二进制代码
电子计算机中的数是用二进制表示的,在计算机中也采用二进制代码表示字母、数字字符、各种各样的符号、汉字等。在处理信息的过程中,可将若干位的二进制代码组合起来表示各种各样的信息。但由于二进制数不直观,人们在计算机上实际操作时,输入、输出的数使用十进制,而具体转换成二进制编码的工作则由计算机软件系统自动完成。
字母和各种字符在计算机中的传输普遍采用Ascll码(American Standard Code For lnformation lnterchange),即美国标准信息交换码,它用了7位二进制数来表达字母和各种常用字符(见附录)。
对于汉字信息的表示比较复杂,我国有汉字几万个,常用的汉字也有7000多个,为了统一,我国制定了汉字编码标准,规定了一、二级汉字共6763个,用两个字节(16位二进制代码)来表示一个汉字进制转二进制:
用2辗转相除至结果为1
将余数和最后的1从下向上倒序写 就是结果
例如302
302/2 = 151 余0
电子计算机中的数是用二进制表示的,在计算机中也采用二进制代码表示字母、数字字符、各种各样的符号、汉字等。在处理信息的过程中,可将若干位的二进制代码组合起来表示各种各样的信息。但由于二进制数不直观,人们在计算机上实际操作时,输入、输出的数使用十进制,而具体转换成二进制编码的工作则由计算机软件系统自动完成。
字母和各种字符在计算机中的传输普遍采用Ascll码(American Standard Code For lnformation lnterchange),即美国标准信息交换码,它用了7位二进制数来表达字母和各种常用字符(见附录)。
对于汉字信息的表示比较复杂,我国有汉字几万个,常用的汉字也有7000多个,为了统一,我国制定了汉字编码标准,规定了一、二级汉字共6763个,用两个字节(16位二进制代码)来表示一个汉字进制转二进制:
用2辗转相除至结果为1
将余数和最后的1从下向上倒序写 就是结果
例如302
302/2 = 151 余0
151/2 = 75 余1
75/2 = 37 余1
37/2 = 18 余1
18/2 = 9 余0
9/2 = 4 余1
4/2 = 2 余0
2/2 = 1 余0
故二进制为100101110
二进制转十进制
从最后一位开始算,依次列为第0、1、2...位
第n位的数(0或1)乘以2的n次方
得到的结果相加就是答案
例如:01101011.转十进制:
第0位:1乘2的0次方=1
75/2 = 37 余1
37/2 = 18 余1
18/2 = 9 余0
9/2 = 4 余1
4/2 = 2 余0
2/2 = 1 余0
故二进制为100101110
二进制转十进制
从最后一位开始算,依次列为第0、1、2...位
第n位的数(0或1)乘以2的n次方
得到的结果相加就是答案
例如:01101011.转十进制:
第0位:1乘2的0次方=1
1乘2的1次方=2
0乘2的2次方=0
1乘2的3次方=8
0乘2的4次方=0
1乘2的5次方=32
1乘2的6次方=64
0乘2的7次方=0
然后:1+2+0
+8+0+32+64+0=107.
二进制01101011=十进制107.
0乘2的2次方=0
1乘2的3次方=8
0乘2的4次方=0
1乘2的5次方=32
1乘2的6次方=64
0乘2的7次方=0
然后:1+2+0
+8+0+32+64+0=107.
二进制01101011=十进制107.
一、二进制数转换成十进制数
由二进制数转换成十进制数的基本做法是,把二进制数首先写成加权系数展开式,然后按十进制加法规则求和。这种做法称为"按权相加"法。
二、十进制数转换为二进制数
由二进制数转换成十进制数的基本做法是,把二进制数首先写成加权系数展开式,然后按十进制加法规则求和。这种做法称为"按权相加"法。
二、十进制数转换为二进制数
十进制数转换为二进制数时,由于整数和小数的转换方法不同,所以先将十进制数的整数部分和小数部分分别转换后,再加以合并。
1. 十进制整数转换为二进制整数
十进制整数转换为二进制整数采用"除2取余,逆序排列"法。具体做法是:用2去除十进制整数,可以得到一个商和余数;再用2去除商,又会得到一个商和余数,如此进行,直到商为零时为止,然后把先得到的余数作为二进制数的低位有效位,后得到的余数作为二进制数的高位有效位,依次排列起来。
2.十进制小数转换为二进制小数
十进制小数转换成二进制小数采用"乘2取整,顺序排列"法。具体做法是:用2乘十进制小数,可以得到积,将积的整数部分取出,再用2乘余下的小数部分,又得到一个积,再将积的整数部分取出,如此进行,直到积中的小数部分为零,或者达到所要求的精度为止。
然后把取出的整数部分按顺序排列起来,先取的整数作为二进制小数的高位有效位,后取的整数作为低位有效位。
1. 十进制整数转换为二进制整数
十进制整数转换为二进制整数采用"除2取余,逆序排列"法。具体做法是:用2去除十进制整数,可以得到一个商和余数;再用2去除商,又会得到一个商和余数,如此进行,直到商为零时为止,然后把先得到的余数作为二进制数的低位有效位,后得到的余数作为二进制数的高位有效位,依次排列起来。
2.十进制小数转换为二进制小数
十进制小数转换成二进制小数采用"乘2取整,顺序排列"法。具体做法是:用2乘十进制小数,可以得到积,将积的整数部分取出,再用2乘余下的小数部分,又得到一个积,再将积的整数部分取出,如此进行,直到积中的小数部分为零,或者达到所要求的精度为止。
然后把取出的整数部分按顺序排列起来,先取的整数作为二进制小数的高位有效位,后取的整数作为低位有效位。
1.二进制与十进制的转换
(1)二进制转十进制<BR>方法:"按权展开求和"
例:
(1011.01)2 =(1×2∧3+0×2∧2+1×2∧1+1×2∧0+0×2∧-1+1×2∧-2)10
=(8+0+2+1+0+0.25)10
=(11.25)10
(2)十进制转二进制
· 十进制整数转二进制数:"除以2取余,逆序输出"
例: (89)10=(1011001)2
2 89
2 44 …… 1
2 22 …… 0
2 11 …… 0
2 5 …… 1
2 2 …… 1
2 1 …… 0
0 …… 1
· 十进制小数转二进制数:"乘以2取整,顺序输出"
例:
(0.625)10= (0.101)2
0.625
X 2
1.25
X 2
0.5
X 2
1.0
2.八进制与二进制的转换
2 2 …… 1
2 1 …… 0
0 …… 1
· 十进制小数转二进制数:"乘以2取整,顺序输出"
例:
(0.625)10= (0.101)2
0.625
X 2
1.25
X 2
0.5
X 2
1.0
2.八进制与二进制的转换
例:将八进制的37.416转换成二进制数:
37 . 4 1 6
011 111 .100 001 110
即:(37.416)8 =(11111.10000111)2
例:将二进制的10110.0011 转换成八进制:
0 1 0 1 1 0 . 0 0 1 1 0 0
2 6 . 1 4
即:(10110.011)2 =(26.14)8
3.十六进制与二进制的转换<BR>例:将十六进制数5DF.9 转换成二进制:
5 D F . 9
0101 1101 1111.1001
即:(5DF.9)16 =(10111011111.1001)2
例:将二进制数1100001.111 转换成十六进制:
0110 0001 . 1110
37 . 4 1 6
011 111 .100 001 110
即:(37.416)8 =(11111.10000111)2
例:将二进制的10110.0011 转换成八进制:
0 1 0 1 1 0 . 0 0 1 1 0 0
2 6 . 1 4
即:(10110.011)2 =(26.14)8
3.十六进制与二进制的转换<BR>例:将十六进制数5DF.9 转换成二进制:
5 D F . 9
0101 1101 1111.1001
即:(5DF.9)16 =(10111011111.1001)2
例:将二进制数1100001.111 转换成十六进制:
0110 0001 . 1110
6 1 . E
即:(1100001.111)2 =(61.E)16
即:(1100001.111)2 =(61.E)16
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。
发表评论