1.2 微型计算机运算基础 | |||||||
1.2.1 二进制数的运算方法 | |||||||
电子计算机具有强大的运算能力,它可以进行两种运算:算术运算和逻辑运算。 1.二进制数的算术运算 二进制数的算术运算包括:加、减、乘、除四则运算,下面分别予以介绍。 (1)二进制数的加法 根据“逢二进一”规则,二进制数加法的法则为: 0+0=0 0+1=1+0=1 1+1=0 (进位为1) 1+1+1=1 (进位为1) 例如:1110和1011相加过程如下: (2)二进制数的减法 根据“借一有二”的规则,二进制数减法的法则为: 0-0=0 1-1=0 1-0=1 0-1=1 (借位为1) 例如:1101减去1011的过程如下: (3)二进制数的乘法 二进制数乘法过程可仿照十进制数乘法进行。但由于二进制数只有0或1两种可能的乘数位,导致二进制乘法更为简单。二进制数乘法的法则为: 0×0=0 0×1=1×0=0 1×1=1 例如:1001和1010相乘的过程如下: 由低位到高位,用乘数的每一位去乘被乘数,若乘数的某一位为1,则该次部分积为被乘数;若乘数的某一位为0,则该次部分积为0。某次部分积的最低位必须和本位乘数对齐,所有部分积相加的结果则为相乘得到的乘积。 (4)二进制数的除法 二进制数除法与十进制数除法很类似。可先从被除数的最高位开始,将被除数(或中间余数)与除数相比较,若被除数(或中间余数)大于除数,则用被除数(或中间余数)减去除数,商为1,并得相减之后的中间余数,否则商为0。再将被除数的下一位移下补充到中间余数的末位,重复以上过程,就可得到所要求的各位商数和最终的余数。 例如:100110÷110的过程如下: 所以,100110÷110=110余10。 2.二进制数的逻辑运算 二进制数的逻辑运算包括逻辑加法(“或”运算)、逻辑乘法(“与”运算)、逻辑否定(“非”运算)和逻辑“异或”运算。 (1)逻辑“或”运算 又称为逻辑加,可用符号“+”或“∨”来表示。逻辑“或”运算的规则如下: 0+0=0或0∨0=0 0+1=1或0∨1=1 1+0=1或1∨0=1 1+1=1或1∨1=1 可见,两个相“或”的逻辑变量中,只要有一个为1,“或”运算的结果就为1。仅当两个变量都为0时,或运算的结果才为0。计算时,要特别注意和算术运算的加法加以区别。 (2)逻辑“与”运算 又称为逻辑乘,常用符号“×”或“· ”或“∧”表示。“与”运算遵循如下运算规则: 0×1=0或0·1=0或0∧1=0 1×0=0或1·0=0或1∧0=0 1×1=1或1·1=1或1∧1=1 可见,两个相“与”的逻辑变量中,只要有一个为0,“与”运算的结果就为0。仅当两个变量都为1时,“与”运算的结果才为1。 (3)逻辑“非”运算 又称为逻辑否定,实际上就是将原逻辑变量的状态求反,其运算规则如下: 可见,在变量的上方加一横线表示“非”。逻辑变量为0时,“非”运算的结果为1。逻辑变量为1时,“非”运算的结果为0。 (4)逻辑“异或”运算 “异或”运算,常用符号“”或“”来表示,其运算规则为: 00=0 或 00=0 01=1 或 01=1 10=1 或 10=1 11=0 或 11=0 可见:两个相“异或”的逻辑运算变量取值相同时,“异或”的结果为0。取值相异时,“异或”的结果为1 以上仅就逻辑变量只有一位的情况得到了逻辑“与”、“或”、“非”、“异或”运算的运算规则。当逻辑变量为多位时,可在两个逻辑变量对应位之间按上述规则进行运算。特别注意,所有的逻辑运算都是按位进行的,位与位之间没有任何联系,即不存在算术运算过程中的进位或借位关系。下面举例说明。 【例1.1】 如两变量的取值 X=00FFH,Y=5555H 求Z1=X∧Y;Z2=X∨Y;Z3=;Z4=XY的值。 解:X=0000000011111111 Y=010********* 则:Z1=0000000001010101=0055H Z2=010*********=55FFH Z3=1111111100000000=FF00H Z4=010*********=55AAH 电子计算机算术运算及逻辑运算规则见表1.4。 表1.4 二进制数运算规则一览表
| |||||||
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。
发表评论