为什么8位有符号数的范围为“-128 —+127”?
(转载加补充)
这是一个困惑了我几年的问题,从我N年前开始摸电脑时,就几乎在每一本C++教科书上都说,8位有符号的取值范围是-128~+127,为什么不是-127~+127呢,后来的java,int的聚值范围,再32位计算,-2^31 ~ +2^31-1。原因没有在工作上或者是什么地方直接遇到它,所以我也一直忽略它,但心里总是有一根刺.直到刚才!!!!
就是刚才,无聊之极,在看汇编的书时,又遇到它了,但一如以往,书上直接地,有心地,明显地绕过了这个问题,真是可恶啊.
几经周折,终于把它搞清楚了:
话说:
用2^8来表示无符号整数的话,全世界的理解都是0 - 255了,那么,有符号呢? 用最高位表示符号,0为+,1为-,那么,正常的理解就是-127 至+127 了.
负75的补码怎么求这就是原码了,值得一提的是,原码的弱点,有2个0,即+0和-0,还有就是,进行异号相加或同号相减时,
比较笨蛋,先要判断2个数的绝对值大小,然后进行加减操作,最后运算结果的符号还要与大的符号相同.
于是乎,反码产生了,原因....略,反正,没过多久,反码就成为了过滤产物,也就是,后来补码出现了.
补码的知识不说述,只说有关+127和-128的.
官方的定义[-2^(n-1),2(n-1)-1],补码的0没有正负之分.原因呢?没有一本书上有说,这也是我这么火的原因,但通过思考,google,再思考,很快到答案:
首先,难不免干点白痴般地事情,穷举一下...
正数,原码跟补码一样
+127, 0111 1111
+126, 0111 1110
+125, 0111 1101
...
+4, 0000 0100
+3, 0000 0011
+2, 0000 0010
+1, 0000 0001
0, 0000 0000 (无正负之分)
下面是负数了,值,原码,符号位不变其它取反,+1
-1, 1000 0001, 1111 1110, 1111 1111
-2, 1000 0010, 1111 1101, 1111 1110
-3, 1000 0011, 1111 1100, 1111 1101
-4, 1000 0100, 1111 1011, 1111 1100
-5, 1000 0101, 1111 1010, 1111 1011
…
-125, 1111 1101, 1000 0010, 1000 0011
-126, 1111 1110, 1000 0001, 1000 0010
-127, 1111 1111, 1000 0000, 1000 0001
看出点什么了没有?
如果没有,那么,给个提示, 再继续下去,下一个补码是什么呢?
当然是
-128, 先略过,再略过, 1000 0000
1000 0000,那么,它的原码是什么呢?
从补码求原码的方法跟原码求补码是一样的
先保留符号位其它求反: 1111 1111, 再加1:11000 0000, 超过了8位了
对,用8位数的原码在这里已经无法表示了
关键就在这里,补码1000 0000 为-128 是不用怀疑的(上面的穷举),
那么,回到原码处, 它的原码也是1000 0000(超出的自动丢失),
1000 0000 在原码表示什么呢? -0, 但补码却规定0没有正负之分
转换一下思路,看看计算机里,是怎么运算的:
对于负数,先取绝对值,然后求反,加一
-128 -> 128 -> 1000 0000 -> 0111 1111 -> 1000 0000
现在明确了吧.
所以, 8位有符号的整数取值范围的补码表示
1000 0000 到0000 0000, 再到0111 1111
即-128 到0, 再到127
最终-128 ~ +127
以上穷举,希望对各位有需要的网友有用,不过据非官方传闻,那个-128的补码表示为80H,即:
0到127 二进制为 00000000到01111111
-128到-1 二进制为10000000到11111111
记住就好。呵呵。
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。
发表评论