高一的log换底公式 性质是什么
log以a为底b的对数——loga(b)=logc(b)/logc(a)也可以写lg(b)]/lg(a)也就是log以10为底b的对数。换底公式是高中数学常用对数运算公式,可将多异底对数式转化为同底对数式,结合其他的对数运算公式一起使用。计算中常常会减少计算的难度,更迅速的解决高中范围的对数运算。
1
定义域求解:对数函数y=logax 的定义域是{x丨x>0},但如果遇到对数型复合函数的定义域的求解,除了要注意大于0以外,还应注意底数大于0且不等于1,如求函数y=logx(2x-1)的定义域,需同时满足x>0且x≠1
和2x-1>0 ,得到x>1/2且x≠1,即其定义域为 {x丨x>1/2且x≠1}
值域:实数集R,显然对数函数无界;
定点:对数函数的函数图像恒过定点(1,0);
函数的定义域怎么算单调性:a>1时,在定义域上为单调增函数;
0<a<1时,在定义域上为单调减函数;
奇偶性:非奇非偶函数
周期性:不是周期函数
对称性:无
最值:无
零点:x=1
注意:负数和0没有对数。
两句经典话:底真同对数正,底真异对数负。解释如下:
也就是说:若y=logab(其中a>0,a≠1,b>0)
当0<a<1,0<b<1时,y=logab>0;
当a>1,b>1时,y=logab>0;
当0<a<1,b>1时,y=logab<0;
当a>1,0<b<1时,y=logab<0。
2
高一对数函数
一般地,对数函数是以幂(真数)为自变量,指数为因变量,底数为常量的函数。一般地,函数y=logaX(a>0,且a≠1)叫做对数函数,也就是说以幂(真数)为自变量,指数为因变量,底数为常量的函数,叫对数函数。其中x是自变量,函数的定义域是(0,+∞),即x>0。它实际上就是指数函数的反函数,可表示为x=ay。因此指数函数里对于a的规定,同样适用于对数函数。
高一指数函数
指数函数是数学中重要的函数。应用到值e上的这个函数写为exp(x)。还可以等价的写为e,
这里的e是数学常数,就是自然对数的底数,近似等于2.718281828,还称为欧拉数。一般地,y=a^x函数(a为常数且以a>0,a≠1)叫做指数函数,函数的定义域是R。
高一对数函数与指数函数二者关系
同底的对数函数与指数函数互为反函数。
当a>0且a≠1时,ax=Nx=㏒aN。
关于y=x对称。
对数函数的一般形式为y=㏒ax,它实际上就是指数函数的反函数(图象关于直线y=x对称的两函数互为反函数),可表示为x=ay。因此指数函数里对于a的规定(a>0且a≠1),因此对于不同大小a所表示的函数图形:关于X轴对称、当a>1时,a越大,图像越靠近x轴、当0<a<1时,a越小,图像越靠近x轴。
对数函数的图形只不过是指数函数的图形的关于直线y=x的对称图形,因为它们互为反函数。
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。
发表评论