梯度的计算和求导公式的联系和区别
方向导数是在函数定义域的内点对某一方向求导得到的导数,一般为二元函数和三元函数的方向导数。方向导数可分为沿直线方向和沿曲线方向的方向导数。
梯度的本意是一个向量(矢量),表示某一函数在该点处的方向导数沿着该方向取得最大值,即函数在该点处沿着该方向(此梯度的方向)变化最快,变化率最大(为该梯度的模)。
方向导数本质上研究的是函数在某点处沿某特定方向上的变化率问题,梯度反映的是空间变量变化趋势的最大值和方向。
函数的定义域怎么算函数在某点的梯度是这样一个向量,它的方向与取得最大方向导数的方向一致,而它的模为方向导数的最大值。
先有梯度,才有方向导数。方向导数和梯度从数学形式就不同,一个是向量(梯度),一个是值(方向导数)。
1、方向导数是数
2、梯度是向量
3、梯度的方向就是函数在这点增长最快的方向,以此类推,降低最快的就是梯度的反方向,变化最慢的就和梯度垂直。
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。
发表评论