听 课 记 录
2014 年9月 21 日
授 课 教 师 | 李金山 | 学 科 | 数学 | 学 校 班 级 | 忠县中学 高一(3)班 |
课题 | 函数定义域,值域,函数值的求法 | 课型 | |||
新授课 | |||||
教师教学过程记录: 引入新知: 一.函数定义域的求法 (一)简单函数的定义域 例1 求下列函数的定义域:(1)f(x)=1/x-2 (2) f(x)= 求解步骤:由已知x-2≠0--------------------------写条件 x≠2 ---------------------------解不等式(组) 所以函数的定义域为{x| x≠2}-------下结论 总结:(1)若f(x)是整式,则定义域为R (2)若f(x)是分式,则分母不能为0 (3)f(x)为偶次根式,则根号下的式子大于或等于0 练习:1.(1)f(x)= (2)f(x)= (3)P19练习 总结:定义域:使每个式子有意义;生活中的实际 2.求下列函数的定义域 (1)y=2x+3 (2)f(x)= (3) (4) (5) f(x)= (二)复合函数的定义域 例2 已知f(x)的定义域为[0,2],求f(2x-1)的定义域。 练习:1.已知f(2x-1)的定义域为(-1,5],求f(x)的定义域。 函数的定义域怎么算 2.已知函数f(x)的定义域为[0,2],那么函数g(x)= 二.函数值的求解 1.已知f(x)=3x+2,求f(-1),f(a),f(1/a-1),f[f()] 2.已知f(x)=求f(3),f(f(-1)) (分段函数) 3.已知f(3x-1)=4x+1,求f(2)=____ 三.求函数的值域(概念的理解,重点) (1)y= (2) x[1,5] 理解: (1)xR 函数值域[0,+] (2)x[-1,1] 函数的值域[0,1] (3)x[1,3] 函数的值域[1,9] 求函数值的方法:画图;截图;确定取值范围(y轴) 练习:,在x[1,8]的值域_____ 课堂总结 | 教学点评: 运用实例生动引出集合元素的概念,为了解集合含义作铺垫 充分体现了以学生为主体,教师为引导者的教学理念。 结合学生情况,充分调动课堂积极性 同一个f括号内约束条件相同;定义域的概念 整体代换思想 一个表达式中的x相同 运用简单例子帮助理解:函数解析式相同,值域取决于定义域 老师精炼的总结,系统的巩固知识。并且 充分调动课堂气氛 | ||||
听课随感:学生对知识主动探索,并在老师的点播下逐渐修正,进而都得出正确结论,富有趣味以及创造性,既培养了学生对知识的兴趣,又防止学生思维僵化。在课业压力较大的的高三,充分做到了效率和时间有机结合,能力和容量相兼容。给予学生自主探索的时间和空间,让学生在自主探索中,获得知识,体验知识的形成过程,获得学习的主动权。在课堂中,教师花了充足的时间让学生多次进行合作学习,在合作探索中得出结论。 | |||||
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。
发表评论