第二章基本初等函数知识点整理
〖2.1〗指数函数
2.1.1指数与指数幂的运算
(1)根式的概念
①如果,且,那么叫做的次方根.当是奇数时,初等函数图像大全表格总结的次方根用符号表示;当是偶数时,正数的正的次方根用符号表示,负的次方根用符号表示;0的次方根是0;负数没有次方根.
②式子叫做根式,这里叫做根指数,叫做被开方数.当为奇数时,为任意实数;当为偶数时,.
③根式的性质:;当为奇数时,;当为偶数时, .
(2)分数指数幂的概念
①正数的正分数指数幂的意义是:且.0的正分数指数幂等于0.②正数的负分数指数幂的意义是:且.0的负分数指数幂没有意义. 注意口诀:底数取倒数,指数取相反数.
(3)分数指数幂的运算性质
① ② ③
2.1.2指数函数及其性质
(4)指数函数
函数名称 | 指数函数 | |
定义 | 函数且叫做指数函数 | |
图象 | ||
定义域 | ||
值域 | (0,+∞) | |
过定点 | 图象过定点(0,1),即当x=0时,y=1. | |
奇偶性 | 非奇非偶 | |
单调性 | 在上是增函数 | 在上是减函数 |
函数值的 变化情况 | y>1(x>0), y=1(x=0), 0<y<1(x<0) | y>1(x<0), y=1(x=0), 0<y<1(x>0) |
变化对 图象的影 响 | 在第一象限内,越大图象越高,越靠近y轴; 在第二象限内,越大图象越低,越靠近x轴. | 在第一象限内,越小图象越高,越靠近y轴; 在第二象限内,越小图象越低,越靠近x轴. |
〖2.2〗对数函数
【2.2.1】对数与对数运算
(1)对数的定义
①若,则叫做以为底的对数,记作,其中叫做底数,叫做真数.
②负数和零没有对数.③对数式与指数式的互化:.
(2)几个重要的对数恒等式: ,,.
(3)常用对数与自然对数:常用对数:,即;自然对数:,即(其中…).
(4)对数的运算性质 如果,那么
①加法: ②减法:
③数乘: ④
⑤ ⑥换底公式:
【2.2.2】对数函数及其性质
(5)对数函数
函数名称 | 对数函数 | |
定义 | 函数且叫做对数函数 | |
图象 | ||
定义域 | ||
值域 | ||
过定点 | 图象过定点,即当时,. | |
奇偶性 | 非奇非偶 | |
单调性 | 在上是增函数 | 在上是减函数 |
函数值的 变化情况 | ||
变化对 图象的影响 | 在第一象限内,越大图象越靠低,越靠近x轴 在第四象限内,越大图象越靠高,越靠近y轴 | 在第一象限内,越小图象越靠低,越靠近x轴 在第四象限内,越小图象越靠高,越靠近y轴 |
(6)反函数的概念
设函数的定义域为,值域为,从式子中解出,得式子.如果对于在中的任何一个值,通过式子,在中都有唯一确定的值和它对应,那么式子表示是的函数,函数叫做函数的反函数,记作,习惯上改写成.
(7)反函数的求法
①确定反函数的定义域,即原函数的值域;②从原函数式中反解出;
③将改写成,并注明反函数的定义域.
(8)反函数的性质
①原函数与反函数的图象关于直线对称.
②函数的定义域、值域分别是其反函数的值域、定义域.
③若在原函数的图象上,则在反函数的图象上.
④一般地,函数要有反函数则它必须为单调函数.
〖2.3〗幂函数
(1)幂函数的定义
一般地,函数叫做幂函数,其中为自变量,是常数.
(2)幂函数的图象
(3)幂函数的性质
①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象分布在第一、二象限(图象关于轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限.
②过定点:所有的幂函数在都有定义,并且图象都通过点.
③单调性:如果,则幂函数的图象过原点,并且在上为增函数.如果,则幂函数的图象在上为减函数,在第一象限内,图象无限接近轴与轴.
④奇偶性:当为奇数时,幂函数为奇函数,当为偶数时,幂函数为偶函数.当(其中互质,和),若为奇数为奇数时,则是奇函数,若为奇数为偶数时,则是偶函数,若为偶数为奇数时,则是非奇非偶函数.
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。
发表评论