数学在生活中的应用
数学是一门很有用的学科。早在远古时代,就有原始人“涉猎计数”与“结绳记事”
如今,数学知识和数学思想在工农业生产和人们日常生活中有极其广泛的应用。譬如,人们购物后须记账,以便年终统计查询;去银行办理储蓄业务;查收各住户水电费用等,这些便利用了算术及统计学知识。此外,社区和机关大院门口的“推拉式自动伸缩门”;运动场跑道直道与弯道的平滑连接;底部不能靠近的建筑物高度的计算;隧道双向作业起点的确定;折扇的设计以及黄金分割等,则是平面几何中直线图形的性质及解Rt三角形有关知识的应用。 因此我们的研究性课题是数学在生活中的运用,希望通过这次小研究,提高我们的数学能力,能够在生活中自觉地运用数学知识。
结合高中知识:函数、不等式、数列等方面,我们上网查了资料相关资料,并结合自身生活实际思考,整理归纳如下。
第一部分 函数的应用
我们所学过的函数有:一元一次函数、一元二次函数、分式函数、无理函数、幂、指、对数函数及分段函数等八种。这些函数从不同角度反映了自然界中变量与变量间的依存关系,因此代数中的函数知识是与生产实践及生活实际密切相关的。
一、一元一次函数的应用
一元一次函数在我们的日常生活中应用十分广泛。当人们在社会生活中从事买卖特别是消费活动时,若其中涉及到变量的线性依存关系,则可利用一元一次函数解决问题。
例如,当我们购物、租用车辆、入住旅馆时,经营者为达到宣传、促销或其他目的,往往会为我们提供两种或多种付款方案或优惠办法。这时我们应三思而后行,深入发掘自己头脑中的数学知识,做出明智的选择。俗话说:“从南京到北京,买的没有卖的精。”我们切不可盲从,以免上了商家设下的小圈套,吃了眼前亏。
过年这几天和家人上街购物,商家纷纷采取各种优惠措施,我就运用自己的数学函数知识精打细算了一次。
我去“好日子”超市购物,一块醒目的牌子吸引了我,上面说购买茶壶、茶杯可以优惠,这似
乎很少见。更奇怪的是,居然有两种优惠方法:(1)卖一送一(即买一只茶壶送一只茶杯);(2)打九折(即按购买总价的90% 付款)。其下还有前提条件是:购买茶壶3只以上(茶壶20元/个,茶杯5元/个)。由此,我不禁想到:这两种优惠办法有区别吗?到底哪种更便宜呢?我便很自然的联想到了函数关系式,决心应用所学的函数知识,运用解析法将此问题解决。
我在纸上写道:
设某顾客买茶杯x只,付款y元,(x>3且x∈N),则
用第一种方法付款y1=4×20+(x-4)×5=5x+60;
用第二种方法付款y2=(20×4+5x)×90%=4.5x+72.
接着比较y1y2的相对大小.
设d=y1-y2=5x+60-(4.5x+72)=0.5x-12.
然后便要进行讨论:
当d>0时,0.5x-12>0,即x>24;
当d=0时,x=24;
当d<0时,x<24.
综上所述,当所购茶杯多于24只时,法(2)省钱;恰好购买24只时,两种方法价格相等;购买只数在4—23之间时,法(1)便宜.
可见,利用一元一次函数来指导购物,即锻炼了数学头脑、发散了思维,又节省了钱财、杜绝了浪费,真是一举两得啊!
二、一元二次函数的应用
在企业进行诸如建筑、饲养、造林绿化、产品制造及其他大规模生产时,
其利润随投资的变化关系一般可用二次函数表示。企业经营者经常依据这方面的知识预计企业发展和项目开发的前景。他们可通过投资和利润间的二次函数关系预测企业未来的效益,从而判断企业经济效益是否得到提高、企业是否有被兼并的危险、项目有无开发前景等问题。
常用方法有:求函数最值、某单调区间上最值及某自变量对应的函数值。
三、三角函数的应用
三角函数的应用极其广泛,最简的也是最常见的一类——锐角三角函数的应用:“山林绿化”问题。
在山林绿化中, 须在山坡上等距离植树,且山坡上两树之间的距离投影到平地上须同平地树木间距保持一致。(如左图)因此,林业人员在植树前,要计算出山坡上两树之间的距离。这便要用到锐角三角函数的知识。
第二部分 不等式的应用
日常生活中常用的不等式有:一元一次不等式、一元二次不等式和平均值不等式。前两类不等式的应用与其对应函数及方程的应用如出一辙,而平均值不等式在生产生活中起到了不容忽视的作用。下面,我们主要谈一下均值不等式和均值定理的应用。
在生产和建设中,许多与最优化设计相关的实际问题通常可应用平均值不等式来解决。平均
值不等式知识在日常生活中的应用,均值不等式和极值定理通常可有如下几方面的极其重要的应用:(表后重点分析“包装罐设计”问题)
实践活动 已知条件 最优方案 解决办法
设计花坛绿地 周长或斜边 面积最大 极值定理一
经营成本 各项费用单价及销售量 成本最低 函数、极值定理二
车船票价设计 航行里程、限载人数、 票价最低 用极值定理二求出
速度、各项费用及相应 最低成本,再由此
比例关系 计算出最低票价
(票价=最低票价+ +平均利润)
包装罐设计 (见表后) (见表后) (见表后)
包装罐设计问题
1、“白猫”洗衣粉桶
“白猫”洗衣粉桶的形状是等边圆柱(如右图所示),
若容积一定且底面与侧面厚度一样,问高与底面半径是
什么关系时用料最省(即表面积最小)?
分析:容积一定=>лr h=V(定值)
=>S=2лr +2лrh=2л(r +rh)= 2л(r +rh/2+rh/2)
≥2л3 (r h) /4 =3 2лV (当且仅当r =rh/2=>h=2r时取等号),
∴应设计为h=d的等边圆柱体.
2、“易拉罐”问题
圆柱体上下第半径为R,高为h,若体积为定值V,且上下底
厚度为侧面厚度的二倍,问高与底面半径是什么关系时用料最
省(即表面积最小)?
分析:应用均值定理,同理可得h=2d∴应设计为h=2d的圆柱体.
事实上,不等式特别是均值不等式在生产实践中的应用远不止这些,在这里就不一一列举了。
三角函数查询表第二部分 数列的应用
在实际生活和经济活动中,很多问题都与数列密切相关。如分期付款、个人投资理财以及人口问题、资源问题等都可运用所学数列知识进行分析,从而予以解决。
重点分析等差数列、等比数列在实际生活和经济活动中的应用。
(一)按揭货款中的数列问题
随着中央推行积极的财政政策,购置房地产按揭货款(公积金贷款)制度的推出,极大地刺激了人们的消费欲望,扩大了内需,有效地拉动了经济增长。
众所周知,按揭货款(公积金贷款)中都实行按月等额还本付息。这个等额数是如何得来的,此外若干月后,还应归还银行多少本金,这些人们往往很难做到心中有数。下面就来寻求这一问题的解决办法。
若贷款数额a0元,贷款月利率为p,还款方式每月等额还本付息a元.设第n月还款后的本金为an,那么有:
a1=a0(1+p)-a,
a2=a1(1+p)-a,
a3=a2(1+p)-a,
......
an+1=an(1+p)-a,.........................(*)
将(*)变形,得 (an+1-a/p)/(an-a/p)=1+p.
由此可见,{an-a/p}是一个以a1-a/p为首项,1+p为公比的等比数列。日常生活中一切有关按揭货款的问题,均可根据此式计算。
第三部分 研究总结
这次研究运用数学知识解决实际问题给我们带来了许多发现和思考的愉快,这也正验证了苏霍姆林斯基所说的:“在人的心灵深处,都有一种根深蒂固的需要,这就是希望自己是一个发现者 、研究者、探索者。”这也正是研究性学习的意义所在。作为中学生,我们不仅要学会数学知识,而且要会应用数学知识去分析、解决生活中遇到的问题.这样才能更好地适应社会的发展和需要。
但这次研究性学习也有不足之处,首先寒假大家联系不便,也较难取得辅导老师的帮助,我们想,毕竟高中所学数学知识有限,如果能在数学老师指导下,学习一些大学深入研究的数学应用知识,可以更好的拓宽知识面,加深理解。其次,我们的生活和经济理财打交道较少,如果能结合学校的饭卡使用过程中的经济问题问题结合统计学知识,调查出同学们的消费水平,一些节俭消费的措施和手段,那数学知识就真的帮上大忙了。最后,希望学校能将其他同学较为优秀的研究性学习成果进行展示,为我们提供借鉴。
高二(22)班 刘丽华 张晶晶 洪泓 曹静 沈彤 夏叶宁 潘玥
同样作者故意的留空,给画面添加了剧情感,仿佛画面中的女孩儿,正在等待某个迟到的男孩。
以上是关于人像拍摄中,黄金分割作品的应用,在风光生态作品中,这类构图方式将赋予他们新的意境,请点击下一页 风光片中,运用好黄金分割构图,也可以为你的画面加不少。试想,如同上图,如果将两个人物置于中间,海水沙滩对半分开,画面就会显得直接,对称,缺乏想象空间。所以作者将人物置于画面的右切割点,表现了大面积的海水令人仿佛听到了海潮声,海风呼呼的吹,男女主人翁携手漫步其中,浪漫温馨。同样主体还是第一个抓住你的视觉的,然而意境却大不相同
以上是关于人像拍摄中,黄金分割作品的应用,在风光生态作品中,这类构图方式将赋予他们新的意境,请点击下一页 风光片中,运用好黄金分割构图,也可以为你的画面加不少。试想,如同上图,如果将两个人物置于中间,海水沙滩对半分开,画面就会显得直接,对称,缺乏想象空间。所以作者将人物置于画面的右切割点,表现了大面积的海水令人仿佛听到了海潮声,海风呼呼的吹,男女主人翁携手漫步其中,浪漫温馨。同样主体还是第一个抓住你的视觉的,然而意境却大不相同
建筑物中某些线段的比就科学采用了黄金分割,希腊雅典的巴特农神庙就是一个很好的例子,古希腊巴特农神庙是举世闻名的完美建筑,它的高和宽的比是0.618。建筑师们发现,按这样的比例来设计殿堂,殿堂更加雄伟、美丽;去设计别墅,别墅将更加舒适、漂亮.连一扇门窗若设计为黄金矩形都会显得更加协调和令人赏心悦目. 建筑师们对数学0.618…特别偏爱,无论是古埃及的金字塔,还是巴黎的圣母院,或者是近世纪的法国埃菲尔铁塔,都有
与0.618…有关的数据。
科学家和艺术家普遍认为,黄金律是建筑艺术必须遵循的规律。因此古代的建筑大师和雕塑家们就巧妙地利用黄金分割比创造出了雄伟壮观的建筑杰作和令人倾倒的艺术珍品:公元前3000年建造的胡夫大金字塔,其原高度与底部边长约为1:1.6,公元前五世纪建造的庄严肃穆的雅典巴特农神殿(Parthenon at Athens),建筑于古希腊数学繁荣的年代,并且它的美丽就是建立在严格的数学法则上的.如果我们在神庙周围描一个矩形,那么发现,它的长是宽的大约1.6倍,这种矩形称为黄金矩形。当今世界最高建筑之一的加拿大多伦多电视塔,塔高553.3m, 而其七层的工作厅建与340m的半空,其比为340:553≈0.615。
无独有偶,这三座具有历史意义的不同时期的建筑,都不约而同地用到了黄金比。
科学家和艺术家普遍认为,黄金律是建筑艺术必须遵循的规律。因此古代的建筑大师和雕塑家们就巧妙地利用黄金分割比创造出了雄伟壮观的建筑杰作和令人倾倒的艺术珍品:公元前3000年建造的胡夫大金字塔,其原高度与底部边长约为1:1.6,公元前五世纪建造的庄严肃穆的雅典巴特农神殿(Parthenon at Athens),建筑于古希腊数学繁荣的年代,并且它的美丽就是建立在严格的数学法则上的.如果我们在神庙周围描一个矩形,那么发现,它的长是宽的大约1.6倍,这种矩形称为黄金矩形。当今世界最高建筑之一的加拿大多伦多电视塔,塔高553.3m, 而其七层的工作厅建与340m的半空,其比为340:553≈0.615。
无独有偶,这三座具有历史意义的不同时期的建筑,都不约而同地用到了黄金比。
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。
发表评论