第一章导论
1. 什么是统计学?
统计学是搜集、处理、分析、解释数据并从中得出结论的科学。
2. 解释描述统计与推断统计。
描述统计研究的是数据搜集、处理、汇总、图表描述、概括与分析等统计方法。推断统计研究的是如何利用样本数据来推断总体特征的统计方法。
3. 统计数据可分为哪几种类型?不同类型的数据各有什么特点?
按照计量尺度可分为分类数据、顺序数据和数值型数据;按照数据的搜集方法,可以分为观测数据和试验数据;按照被描述的现象与实践的关系,可以分为截面数拯和时间序列数据。
4. 解释分类数据、顺序数据和数值型数据的含义。
分类数据是只能归于某一类別的非数字型数据;顺序数据是只能归于某一有序类別的非数字型数据;数值型数据是按照数字尺度测量的观测值,其结杲表现为具体的数值。
5. 举例说明总体、样本、参数、统计量、变量这几个概念。
总体是包含所研究的全部个体的集合,样本是从总体中抽取的一部分元素的集合,参数是用来描述总体特征的概括性数字度量,统计量是用来描述样本特征的概括性数字度量,变量是用来说明现象某种特征的概念。
6. 变量可分为哪几类?
变量可分为分类变量、顺序变量和数值型变量。分类变量是说明书屋•类别的一个名称,其取值为分类数据;顺序变量是说明十五有序类别的一个名称,其取值是顺序数拯;数值型变量是说明事物数字特征的一个名称,其取值是数值型数据。
7. 举例说明离散型变量和连续型变量。
离散型变量是只能去可数值的变量,它只能取有限个值,而且其取值都以整位数断开,如“产品数量”;连续性变量是可以在一个或多个区间中取任何值的变量,它的取值是连续不断的,不能一一列举,如“温度”等。
第二章数据的捜集
1. 什么是二手资料?使用二手资料需要注意些什么?
与研究内容有关、由别人调查和试验而来、己经存在并会被我们所利用的资料为二手资料。
使用时要评估资料的原始捜集人、搜集口的、搜集途径、搜集时间且使用时要注明数据来源。
2. 比较概率抽样和非概率抽样的特点。举例说明什么情况下适合采用概率抽样,什么情况下适
合采用非概率抽样。
概率抽样:指遵循随机原则进行的抽样,总体中每一个单位都有一定的机会被选入样本。当用样本对总体进行估计时,要考虑毎个单位样本被抽中的概率。技术含量和成本都比较高。
如杲调查目的在于掌握和研究对象总体的数量特征,得到总体参数的置信区间,就使用概率抽样。
非概率抽样:指抽取样本时不是依据随机原则,而是根据研究冃的对数据的要求,釆用某种方式从总体中抽取部分单位对其进行实施调查。操作简单、时效快、成本
低。而且对于抽样中的统计学专业技术要求不是很高。它适合探索性的研究,调查结果用于发现问题,为更深入的数量分析提供准备。
3. 调查中搜集数据的方法主要有自填式、面访式、电话式。除此之外,还有哪些搜集数据的方
法?
试验式和观察式。
4. 自填式、面访式、电话式调查各有什么利弊?
自填式优点:调查组织者管理容易;成本低,可进行大规模调查;减少被调查者回答敏感问题的压力。缺点:返冋率低;调查内容有限;调查周期长;在数据搜集过程中遇见问题不能及时调整。
面访式优点:回答率高;数据质量高;在调查过程屮遇见问题可以及时调整。缺点:成本比较高;搜集数据的方式对调查过程的质量控制有一定难度;对于敏感问题,被访者会有压力。
电话式优点:对调查员比较安全;对访问过程的控制比较容易。缺点:实施地区有限; 调查时间不能过长;使用的问卷要简单;被访者不愿回答时,不易劝服。
5. 你认为应当如何控制调查中的回答误差?
对于理解误差,我会学习一些心理学知识;对于记忆误差,我会尽量去缩短所涉及的时间范围;对于有意识误差,要做好被调査者的心理工作,要遵守职业道德,为被调查者保密,尽量在问卷中不涉及敏感问题。
6. 怎样减少无回答?请通过一个例子说明你所考虑到的减少无回答的具体措施。
对于随机误差,要提高样本容量;对于系统误差,只有做好准备工作并做好补救措施。
1 •数据的预处理包括哪些内容?
第三章数据的表展示
数据审核(对于原始数据:完整性和准确性;对于二手数据:实用性和实效性)、数据筛选和数据排序。
2. 分类数据和顺序数据的整理和图示方法各有哪些?
分类数据:制作频数分布表,用比例、百分比和比率等进行描述性分析,可用条形图、帕累托图、饼图和环形图进行图示分析。
顺序数据:制作频数分布表,用比例、百分比、比率、累计频数和累计频率等进行描述性分析,可用条形图、帕累托图、饼图、累计评书分布图和环形图进行分析。
3. 数值型数据的分组方法有哪些?简述组距分组的步骤。
分组方法:单变量值分组和组距分组,组距分组又分为等距分组和异距分组。分
组步骤:①确定组数②确定组距③根据分组整理成频数分布表。
4. 直方图与条形图有何区别?
条形图使用的长度表示各类别频数的多少,其宽度固定;直方图用面积表示各组频数, 矩形的高度表示魅族的频数或频率,宽度表示组距。直方图各矩形连续排列,条形图分开排列。
直方图主要展示数值型数据。
5. 绘制线图应注意哪些问题?
时间在横轴,观测值在纵轴。一般是长宽比例10: 7的长方形,纵轴下端一般从0 开始,数据与0距离过大的话用折断符号折断。
6. 饼图和环形图有什么不同?
饼图只能显示一个样本或总体各部分所占比例,环形图可以同时绘制多个样本或总
体的数据系列。
7. 茎叶图与直方图相比有什么优点?他们的应用场合是什么?
茎叶图既能给出数据的分布情况,又能给出每个原始数据,即保留了原始数据的信息。茎叶图通常适用于小批量数据,直方图适用于大批量数据。
8. 鉴别图表优劣的准则有哪些?
显示数据;有助于洞察问题的木质;使复杂的观点得到简明、确切、高效的阐述;快速高效地给读者提供大量的信息;多维的;表述数据的真实情况。
9. 制作统计表时应注意哪几个问题?
合理安排统计表结构;表头一般包括表号、总标题和表中数据的单位等内容;在使用统计表时,必要时可在下方加注释注明数据來源。
第四章数据的概括性度量
1. 一组数据的分布特征可以从哪几个方面进行测度?
可以从数据分布的集中趋势、离散程度和分布的偏态与峰态三个方面进行测量。集中其实反映了各数据
向其屮心支靠拢或聚集的程度;离散程度反映了各数据原理其屮心值的趋势;偏态与峰态反映了数据分布的图像形状。
2. 简述众数、中位数和平均数的特点和应用场合。
众数是一组数据分布的峰值,不受极端值的影响,缺点是具有不唯一性。众数只有在数据量较多时才有意义。主要适合作为分类数据的集中趋势测度值。
中位数是一组数据中间位置上的代表值,不受极端值影响,当数据分布的偏斜较大时,可以使用中位数。主要适合作为顺序数据的集中趋势测度值。
平均是是针对数值型数据计算的,而且利用了全部数据信息。当数据呈对称分布或接近对称分布时,三个代表值相等或接近相等,这时应选平均数作为集中趋势的代表值。但平均数的主要缺点是易受极端值的影响;对于偏态分布的数据,平均数的代表性较差。
3. 简述异众比率、四分位差、方差或标准差的应用场合。
异众比率主要用于测量分类数据的离散程度;四分位差主要用于测量顺序数据的离散程度;
方差或标准差主要用于测量数值型数据的离散程度。
4. 标准分数有哪些用途?
标准分数给出了一组数据中各数值的相对位置。在对多个具有不同量纲的变量进行处理时,常需要对各变量进行标准化处理。它还可以用来判断一组数据是否有离数据。
5. 为什么要计算离散系数?
方差和标准差是反映数据离散程度的绝对值,一方面其数值大小受原变量值本身水平高低的影响;另一方面,他们与原变量的计量单位相同,采用不同计量单位的变量值,其离散程度的测度值也就不同。
6. 测度数据分布形状的统计量有哪些?
对于分布形状的测度有偏态和峰态。测度偏态的统计量是偏态系数;测度峰态的统计量是峰态系数。
第五章概率与概率分布
直方图与条形图有何区别1. 频率与概率有什么关系?
在相同条件下随机试验曲欠,某事件出现m次,则比值匸称为该事件发生的频率。随n
着九的增大,该频率围绕某一常数P波动,且波动幅度逐渐减小,趋于稳定,这个频率的稳定值即为该
事件的概率。
第六章统计量及其抽样分布
1. 什么是统计量?为什么要引进统计量?统计量中为什么不含任何未知参数?
统计量:设X1,X2,…,x n是从总体X总抽取的容量为九的一个样本,如杲由此样本构造一个函数T(X1,X2,…,X』,不依赖于任何未知参数,贝IJ称函数7(X1,忌…,X』是一个统计量。
由样本构造具体的统计量,实际上是对样本信息进行加工并集中到统计量的取值上,便于通过统计量推断总体参数。
曲于样本己经抽出,故统计量总是知道的,因此统计量不含有任何未知参数。
2. 简述护分布、£分布、F分布及正态分布之间的关系。
正态分布:Z = U_〜/V(O,1),则X〜N(e(y2)
护分布:设随机变量X.X乙…相互独立,且服从标准正态分布N(O,1),则他们的平方和口“ X?
服从自由度为的护分布。
t分布:设随机变量X〜Y〜护(71),且X与Y独立,则£ =
其分布称为上分布。
F分布:设随机变量Y与Z相互独立,且丫与Z分别服从自由度为m和71的护分布,贝IJ Z/n mZ
3. 什么是抽样分布?
在总体X的分布类型已知时,若对任一自然数71,都能导出统计量T = …,
的分布的数学表达式,这种分布称为精确的抽样分布。
4. 简述中心极限定理的意义。
中心极限定理:设从均值为“,方差为/的一个文艺总体中抽取容量为71的样本,当九充分大时,样本均值的抽样分布近似服从均值为“,方差为"2/71的正态分布。意义:是数理统计学和误差分析的理论基础,指出了大量随机变量之和近似服从正态分布的条件。
第七章参数估计
1. 解释估计量和估计值。
估计量:用于估计总体参数的随机变量。
估计值:估计参数时计算出来的统计量的具体值。
2. 简述评价估计量好坏的标准。
无偏性:估计量抽验分布的数学期望等于被估计的总体参数。
有效性:对同一总体参数的连个无偏点估计量,有更小标准差的估计量更有效。一致性:随着样本容量的增大,估计量的值越来越接近被估计的总体参数。
3. 怎样理解置信区间?
由样本统计量所构造的总体参数的估计区间。
4. 解释95%的置信区间。
用某种方法构造的所有区间中有95%的区间包含总体参数的真值。
5. z 二的含义是什么?
。/2石
氐代是标准正态分布上侧面积为a/2的z值,公式是统计总体均值时的边际误差。
6. 解释独立样本和匹配样本的含义。
独立样本:两个样本是从两个总体总独立抽取的。
匹配样本:一个样本中的数据与另一个样本中的数据相对应。
7. 在对两个总体均值之差的小样本估计中,对两个总体和样本都有哪些假定?
两个总体都服从正态分布;两个随机样本独立地分别抽自两个总体。
8. 简述样本量与置信水平、总体方差、估计误差的关系。
样本量与置信水平成正比,与总体方差成正比,与估计误差的平方成反比。
第八章假设检验
1. 假设检验和参数估计有什么相同点和不同点?
参数估计和假设检验是统计推断的两个组成部分,他们都是利用样本对总体进行某种推断,然而推断的
角度不同。参数估计讨论的是用样本统计量估计总体参数的方法, 总体参数在估计前是未知的;而在假设检验中,则是先对参数的值提出一个假设,然后利用样本信息去检验这个假设是否成立。
2. 什么是假设检验中的显著性水平?统计显著是什么意思?
显著性水平是指当原假设正确时却被拒绝的概率和风险,统计限制等价拒绝Ho,指求出的值落在小概率的区间上,一般是落在0.05或比0. 05更小的显著性水平上。
3. 什么是假设检验中的两类错误?
一类错误是原假设Ho为真却被我们拒绝了,犯这种错误的概率用a表示,也称a错误或弃真错误;另一类错误是原假设为伪我们却没有拒绝,犯这种错课的概率用"表示,也称0错误或取伪错误。
4. 两类错误之间存在什么样的数量关系?
在假设检验中,曲是此消彼长的关系。如果减小a错误,就会增大犯0错误的机会,若减小0错误,也会增大犯a错误的机会。
5. 解释假设检验中的P值。
P值就是当原假设为真时所得到的样本观察结果或更极端结果出现的概率。它的大小取决于三个因素:一个是样本数据与原假设之间的差异;一个是样本量;一个是被假设参数的总体分布。
6. 显著性水平与P值有何区别?
显著性水平是原假设为真时,拒绝原假设的概率,是一个概率值,被称为抽样分布的拒绝域,大小由研究者事先确定;而P值是原假设为真时所得到的样本观察结果或更极端结果出现的概率,被称为观察到的显著性水平。
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。
发表评论