3.1数据预处理内容:数据审核(完整性和准确性;适用性和实效性),数据筛选和数据排序。
3.2分类数据和顺序数据的整理和图示方法各有哪些
分类数据:制作频数分布表,用比例,百分比,比率等进行描述性分析。可用条形图,帕累托图和饼图进行图示分析。
顺序数据:制作频数分布表,用比例,百分比,比率。累计频数和累计频率等进行描述性分析。可用条形图,帕累托图和饼图,累计频数分布图和环形图进行图示分析。
3.3数据型数据的分组方法和步骤分组方法:单变量值分组和组距分组,组距分组又分为等距分组和异距分组。
分组步骤:1确定组数2确定各组组距3根据分组整理成频数分布表
3.4直方图和条形图的区别1条形图使用图形的长度表示各类别频数的多少,其宽度固定,直方图用面积表示各组频数,矩形的高度表示每一组的频数或频率,宽度表示组距,2直方图各矩形连续排列,条形图分开排列,3条形图主要展示分类数据,直方图主要展示数值型数据。
3.5绘制线图应注意问题时间在横轴,观测值绘在纵轴。一般是长宽比例10:7的长方形,纵轴下端一般从0开始,数据与0距离过大的话用折断符号折断。
3.6饼图和环形图的不同饼图只能显示一个样本或总体各部分所占比例,环形图可以同时绘制多个样本或总体的数据系列,其图形中间有个“空洞”,每个样本或总体的数据系类为一个环。
3.7茎叶图比直方图的优势,他们各自的应用场合
茎叶图既能给出数据的分布情况,又能给出每一个原始数据,即保留了原始数据的信息。在应用方面,直方图通常适用于大批量数据,茎叶图适用于小批量数据。
3.8鉴别图标优劣的准则1一张好图应当精心设计,有助于洞察问题的实质。2一张好图应当使复杂的观点得到简明、确切、高效的阐述。3一张好图应当能在最短的时间内以最少的笔墨给读者提供最大量的信息。4一张好图应当是多维的。5一张好图应当表述数据的真实情况。
3.9制作统计表应注意的问题(1)合理安排统计表结构(2)表头一般包括表号,总标题和表中数
据的单位等内容(3)表中的上下两条横线一般用粗线,中间的其他用细线(4)在使用统计表时,必要时可在下方加注释,注明数据来源。
公式:
组中值=(上限+下限)/2   
6.1 统计量:设X1,X2,Xn是从总体X中抽取的容量为n的一个样本,如果由此样本构造一个函数T(X1,X2,Xn),不依赖于任何未知参数,则称函数T(X1,X2,Xn)是一个统计量。
原因:为了使统计推断成为可能。
6.2  T1和T2是
6.3  次序统计量:设X1,X2,,Xn是从总体X中抽取的一个样本,Xi称为第i个次序统计量,它是样本(X1,X2,…,Xn)满足如下条件的函数:每当样本得到一组观测值X1,X2,…,Xn时,其由小到大的排序X1≤X2≤…≤Xi≤…≤Xn中,第i个值Xi就作为次序统计量Xi的观测值,而X1,X2,…,Xn称为次序统计量。
6.4  统计量加工过程中一点信息都不损失的统计量为充分统计量
6.5  自由度:独立变量的个数
6.7  抽样分布:样本统计量的概率分布是一种理论概率分布随机变量是 样本统计量。
6.8  中心极限定理:设从均值为,方差为 2的一个任意总体中抽取容量为n的样本,当n充分大时,样本均值的抽样分布近似服从均值为μ、方差为σ2/n的正态分布
8.1假设检验和参数估计有什么相同点和不同点?
答:参数估计和假设检验是统计推断的两个组成部分,它们都是利用样本对总体进行某种推断,然而推断的角度不同。参数估计讨论的是用样本统计量估计总体参数的方法,总体参数μ在估计前是未知的。而在参数假设检验中,则是先对μ的值提出一个假设,然后利用样本信息去检验这个假设是否成立。
8.2什么是假设检验中的显著性水平?统计显著是什么意思?答:显著性水平是一个统计专有名词,在假设检验中,它的含义是当原假设正确时却被拒绝的概率和风险。统计显著等价拒
绝H0,指求出的值落在小概率的区间上,一般是落在0.05或比0.05更小的显著水平上。
8.3什么是假设检验中的两类错误?
答:假设检验的结果可能是错误的,所犯的错误有两种类型,一类错误是原假设H0为真却被我们拒绝了,犯这种错误的概率用α表示,所以也称α错误或弃真错误;另一类错误是原假设为伪我们却没有拒绝,犯这种错误的概论用β表示,所以也称β错误或取伪错误。
8.4两类错误之间存在什么样的数量关系?答:在假设检验中,αβ是此消彼长的关系。如果减小α错误,就会增大犯β错误的机会,若减小β错误,也会增大犯α错误的机会。
8.5解释假设检验中的P值答:P值就是当原假设为真时所得到的样本观察结果或更极端结果出现的概率。(它的大小取决于三个因素,一个是样本数据与原假设之间的差异,一个是样本量,再一个是被假设参数的总体分布。)
8.6显著性水平与P值有何区别答:显著性水平是原假设为真时,拒绝原假设的概率,是一个概率值,被称为抽样分布的拒绝域,大小由研究者事先确定,一般为0.05。而P只是原假设为真时所得到的样本观察结果或更极端结果出现的概率,被称为观察到的(或实测的)显著性
水平
8.7假设检验依据的基本原理是什么?
答:假设检验依据的基本原理是“小概率原理”,即发生概率很小的随机事件在一次试验中是几乎不可能发生的。根据这一原理,可以作出是否拒绝原假设的决定。
8.8你认为单侧检验中原假设与备择假设的方向如何确定?
答:将研究者想收集证据予以支持的假设作为备择假设H1,将研究者想收集证据证明其不正确的假设作为原假设H0,先确立备择假设H1,备择假设的方向与想要证明其正确性的方向一致,原假设与备择假设是互斥的,等号总在原假设上。(举例说明,如下:“一项研究表明,采用新技术生产后,将会使产品的使用寿命明显延长到1500小时以上。检验这一结论是否成立”,则备择假设的方向为“>”(寿命延长),建立的原假设与备择假设应为H0:μ≤1500,H1:μ>1500.又例,“一项研究表明,改进生产工艺后,会使产品的废品率降低到2%以下。检验这一结论是否成立”,则备择假设的方向为“<”(废品率降低),建立的原假设与备择假设应为H0: μ≥2% H1: μ< 2%.)
10.1什么是方差分析?它研究的是什么?
答:方差分析就是通过检验各总体的均值是否相等来判断分类型自变量对数值型因变量是否有显著影响。它所研究的是非类型自变量对数值型因变量的影响。
10.2要检验多个总体均值是否相等时,为什么不作两两比较,而用方差分析方法?
答:作两两比较十分繁琐,进行检验的次数较多,随着增加个体显著性检验的次数,偶然因素导致差别的可能性也会增加。而方差分析方法则是同时考虑所有的样本,因此排除了错误累积的概率,从而避免拒绝一个真实的原假设。
10.3方差分析包括哪些类型?它们有何区别?
答:方差分析可分为单因素方差分析和双因素方差分析。区别:单因素方差分析研究的是一个分类型自变量对一个数值型因变量的影响,而双因素涉及两个分类型自变量。
10.4方差分析中有哪些基本假定
答:方差分析中有三个基本假定:
(1)每个总体都应服从正态分布
(2)各个总体的方差σ2必须相同
(3)观测值是独立的
10.5简述方差分析的基本思想。
答: 它是通过对数据误差来源的分析来判断不同总体的均值是否相等,进而分析自变量对因变量是否有显著影响。
10.6解释因子与处理的含义。答:在方差分析中,所要检验的对象称为因素或因子,因素的不同表现称为水平或处理。
10.7解释组内误差和组间误差的含义
答:组内误差(SSE)是指每个水平或组的个样本数据与其组平均值误差的平方和,反映了每个样本各观测值的离散状况;组间误差(SSA)是指各组平均值i与总平均值的误差平方和,反映各样本均值之间的差异程度。
10.8解释组内方差和组间方差的含义
答:组内方差指因素的同一水平(同一个总体)下样本数据的方差,组间方差指因素的不同水平(不同总体)下各样本之间的方差。
10.9简述方差分析的基本步骤。
答:(1)提出假设(一般提法形式如下:H0:μ1直方图与条形图有何区别=μ23=i=k,自变量对因变量没有显著影响, H1:μi (i=1,2,3..,k)不全相等,自变量对因变量有显著影响)
(2)构造检验统计量(包括:计算各样本的均值,计算全部观测值的总均值,计算各误差平方和,计算统计量)
(3)统计决策。(将统计量的值F与给定的显著性水平undefined的临界值F进行比较,作出对原假设H0的决策)
10.10方差分析中多重比较的作用是什么?答:通过对总体均值之间的配对比较来进一步检验到底哪些均值之间存在差异。
10.11什么是交互作用?答:交互作用是指几个因素搭配在一起会对因变量产生一种新的效应的作用。
10.12解释无交互作用和有交互作用的双因素方差分析。
答:在双因素方差分析中,如果两个因素对试验结果的影响是相互独立的,分别判断行因素和列因素对试验数据的影响,这时的双因素方差分析称为无交互作用的双因素方差分析或无重复双因素方差分析;如果除了行因素和列因素对试验数据的单独影响外,两个因素的搭配还会对结果产生一种新的影响,这时的双因素方差分析称为有交互作用的双因素方差分析或可重复双因素方差分析。
13.1简述时间序列的构成要素。时间序列的构成要素:趋势,季节性,周期性,随机性
13.2利用增长率分析时间序列时应注意哪些问题
(1)当时间序列中的观察值出现0或负数时,不宜计算增长率;
(2)不能单纯就增长率论增长率,要注意增长率与绝对水平的综合分析;大的增长率背后,其隐含的绝对值可能很小,小的增长率背后其隐含的绝对值可能很大。
13.3简述平稳序列和非平稳序列的含义。
1.平稳序列(stationary series)
基本上不存在趋势的序列,各观察值基本上在某个固定的水平上波动或虽有波动,但并不存在某种规律,而其波动可以看成是随机的
2.非平稳序列 (non-stationary series)
是包含趋势、季节性或周期性的序列,它可能只含有其中的一种成分,也可能是几种成分的组合。因此,非平稳序列又可以分为有趋势的序列、有趋势和季节性的序列、几种成分混合而成的复合型序列。
13.4简述时间序列的预测程序。
第一步:确定时间序列所包含的成分,也就是确定时间序列的类型。
第二步:出适合此类时间序列的预测方法。
第三步:对可能的预测方法进行评估,以确定最佳预测方案。
第四步:利用最佳预测方案进行预测。

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。