统计学基础(贾俊平)课后简答题
第一章
1.什么是统计学?统计方法可以分为哪两大类?
统计学是收集、处理、分析、解释数据并从数据中得出结论的科学。统计方法可以分为描述统计和分类统计。
2、统计数据可分为哪几种类型?不同类型的数据各有什么特点?
按照所采用的计量尺度不同,分为分类数据、顺序数据和数值型数据;按照统计数据的收集方法,分为观测的数据和实验的数据;按照被描述的对象与时间的关系,分为截面数据和时间序列数据。
按计量尺度分时:分类数据中各类别之间是平等的并列关系,各类别之间的顺序是可以任意改变的;顺序数据的类别之间是可以比较顺序的;数值型数据其结果表现为具体的数值。按收集方法分时:观测数据是在没有对事物进行人为控制的条件下等到的;实验数据的在实验中控制
实验对象而收集到的数据。按被描述的对象与时间关系分时:截面数据所描述的是现象在某一时刻的变化情况;时间序列数据所描述的是现象随时间而变化的情况。
3.举例说明总体、样本、参数、统计量、变量这几个概念。
总体是包含所研究的全部个体(数据)的集合
样本是从总体中抽取的一部分元素的集合
参数是用来描述总体特征的概括性数字度量
统计量是用来描述样本特征的概括性数字度量
变量是说明现象某种特征的概念。
对一千灯泡进行寿命测试,那么这千个灯泡就是总体,从中抽取一百个进行检测,这一百个灯泡的集合就是样本,这一千个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是参数,这一百个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是统计量,变量就是说明现象某种特征的概念,比如说灯泡的寿命。
4.什么是有限总体和无限总体?举例说明。
根据总体所包含的单位数目是否可数可以分为有限总体和无限总体。总体的范围能够明确确定,而且元素的数目是有限可数的。比如,由若干个企业构成的总体就是有限总体,一批待检验的灯泡也是有限总体。无限总体是指总体所包括的元素是无限的,不可数的。例如,在科学试验中,每一个试验数据可以看作是一个总体的一个元素,而试验可以无限地进行下去,因此由试验数据构成的总体就是一个无限总体。
5.变量可分为哪几类?
分类变量:说明事物类别的一个名称。
顺序变量:说明事物有序类别的一个名称。
数值型变量:说明事物数字特征的一个名称。
离散型变量:只能取可数值的变量。
连续型变量:可以在直线上或区间中去任何值的变量。
6.举例说明离散型变量和连续型变量。
离散型变量:只能取有限个值,取值以整数位断开。如企业数、产量数量
连续型变量:取值连续不断,不能一一列举,如年龄、温度
第三章
1.数据的预处理包括哪些内容?
数据审核(完整性和准确性;适用性和实效性),数据筛选,数据排序等。
2.直方图与条形图有什么区别?
条形图中每一矩形表示一个类别,其宽度没有意义,而直方图的宽度则表示各组的组距。其次,由于分组数据具有连续性,直方图的各矩形通常是连续排列的,而条形图是分开排列的。最后,条形图主要用于展示定性数据,而直方图则主要用于展示定量数据。
3.饼图与环形图有什么不同?
饼图是用圆形及圆内扇形的面积来表示数值大小的图形,它主要用于表示总体中各组成部分所占的比例,对于研究结构性问题十分有用。环形图与饼图类似,但它们之间也有区别。饼图只能显示一个样本或总体各部分所占比例,环形图可以同时绘制多个样本或总体的数据系列,其图形中间有个“空洞”,每个样本或总体的数据系类为一个环。因此环形图可显示多个总体或样本各部分所占的相应比例,从而有利于我们进行比较研究。
4.茎叶图与直方图相比有什么优点?
直方图看数据的分布很方便,但原始数据看不至到了茎叶图则不同,它不仅可以看出数据的分布,又能给出每一个原始数值,即保留了原始数据的信息。制作茎叶图不需要对数据进行分组 ,特别是当数据量较少时,用茎叶图更容易观察数据的分布。
5.使用图表应注意哪些问题?
1)显示数据。(2)让读者把注意力集中在图形的内容上,而不是在制作图形的程序上(3)避免歪曲!(4)强调数据之间的比较。(5)服务于一个明确的目的。(6)有对图形的统计描述和文字说明。
第四章
1.一组数据的分布特征可以从哪几个方面进行测度?
数据分布的特征主要从三个方面进行测度和描述:一是分布的集中趋势,反映各数据向其中心值靠拢E或聚集的程度;二是分布的离散程度,反映各数据远离其中心值的趋势;三是分布的形状,反映数据分布偏斜程度和峰度。
2.简述四分位数的计算方法。
四分位数是一组数据排序后处于25%75%位置上的值。根据未分组数据计算四分位数时,首先对数据进行排序,然后确定四分位数所在的位置,该位置上的数值就是四分位数直方图与条形图有何区别。
3.对于比率数据为什么采用几何平均?
答:比率数据往往表现出连乘积为总比率的特征,不同于一般数据的和为总量的性质,由此需采用几何平均。在实际应用中,对于比率数据的平均采用几何平均要比算数平均更合理。从公式中也可看出,G就是平均增长率。
4.简述众数、中位数和平均数的特点和应用场合。
答:众数、中位数和均值是分布集中趋势的三个主要测度,众数和中位数是从数据分布形状及位置角度来考虑的,而均值是对所有数据计算后得到的。众数容易计算,但不是总是存在,应用场合较少;中位数直观,不受极端数据的影响,但数据信息利用不够充分;均值数据提取的信息最充分,但受极端数据的影响。
众数是一组数据中出现次数最多的数,不受极端值的影响,缺点是具有不唯一性。众数只有在数据量较多时才有意义,数据量较少时不宜使用。主要适合作为分类数据的集中趋势测度值。 
中位数是一组数据中间位置上的代表值,不受极端值的影响。当数据的分布偏斜较大时,使用中位数也许不错。主要适合作为顺序数据的集中趋势测度值。 
平均数对数值型数据计算的,而且利用了全部数据信息,在实际应用中最广泛。当数据呈对称分布或近似对称分布时,三个代表值相等或相近,此时应选择平均数。但平均数易受极端值的影响,对于偏态分布的数据,平均数的代表性较差,此时应考虑中位数或众数。
5.简述四分位差、方差或标准差的适用场合。
对于顺序数据主要使用四分位差来测量其离散程度;对于数值型数据,主要使用方差或标准差来测量其离散程度。
6.标准分数有哪些用途?
标准分数给出了一组数据中各数值的相对位置。在对多个具有不同量纲的变量进行处理时,常需要对各变量进行标准化处理。它还可以用来判断一组数据是否有离数据
7.为什么要计算离散系数?
答:在比较两组数据的差异程度时,由于方差和标准差受变量值水平和计量单位的影响不能直接比较,由此需计算离散系数作为比较的指标。
方差和标准差是反映数据分散程度的绝对值,一方面其数值大小受原变量值本身水平高低的影响,也就是与变量的平均数大小有关;另一方面,它们与原变量的计量单位相同,采用不同计量单位的变量值,其离散程度的测度值也就不同。因此,为消除变量值水平高低和计量单位不同对离散程度测度值的影响,需要计算离散系数。
第五章
1、解释抽样推断的含义。
如果我们掌握了所研究的总体的全部数据,那么只需要做一些简单的统计描述就可以得到有关总体的数量特征,比如,总体的均值、方差、比例等。但现实的情况则比较复杂,有些现象的范围比较广,不可能对总体中的每个单位都进行测定。或者有些总体的单位数很多,不可能也没有必要进行一一测定。这就需要从总体中抽取一部分单位进行调查,进而利用样本本提供的信息来推断总体的数量特征。
23.解释简单随机抽样、分层抽样、系统抽样和整抽样的含义。
简单随机抽样:从含有N个元素得总体中,抽取n个元素作为样本,使得每一个容量为n得样本都有相同得机会(概率)被抽中,这样的抽样方式称为简单随机抽样,也称纯随机抽样。
分层抽样在抽样之前先将总体的元素划分为若干层(类),然后从各个层中抽取一定数量的元素组成一个样本,这样的抽样方式称为分层抽样,也称分类抽样。特点:(1)除了可以对总体进行估计外,还可以对各层的子总体进行估计。(2)分层抽样可以按自然区域或
行政区域进行分层,使抽样的组织和实施都比较方便(3)分层抽样的样本分布在各个层内,从而使样本在总体中的分布比较均匀。(4)分层抽样可以提高估计的精度。

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。