数学符号的读音
大写 小写 英文注音 国际音标注音 中文注音
Α α alpha alfa 阿耳法
Β β beta beta 贝塔
Γ γ gamma gamma 伽马
Δ δ deta delta 德耳塔
Ε ε epsilon epsilon 艾普西隆
Ζ ζ zeta zeta 截塔
Η η eta eta 艾塔
Θ θ theta θita 西塔
Ι ι iota iota 约塔
Κ κ kappa kappa 卡帕
∧ λ lambda lambda 兰姆达
Μ μ mu miu 缪
Ν ν nu niu 纽
Ξ ξ xi ksi 可塞
Ο ο omicron omikron 奥密可戎
∏ π pi pai 派
Ρ ρ rho rou 柔
∑ σ sigma sigma 西格马
Τ τ tau tau 套
Υ υ upsilon jupsilon 衣普西隆
Φ φ phi fai 斐
Χ χ chi khai 喜
Ψ ψ psi psai 普西
Ω ω omega omiga 欧米伽
i | -1的平方根 |
f(x) | 函数f在自变量x处的值 |
sin(x) | 在自变量x处的正弦函数值 |
exp(x) | 在自变量x处的指数函数值,常被写作ex |
a^x | a的x次方;有理数x由反函数定义 |
ln x | exp x 的反函数 |
ax | 同 a^x |
logba | 以b为底a的对数; blogba = a |
cos x | 在自变量x处余弦函数的值 |
tan x | 其值等于 sin x/cos x |
cot x | 余切函数的值或 cos x/sin x |
sec x | 正割含数的值,其值等于 1/cos x |
csc x | 余割函数的值,其值等于 1/sin x |
asin x | y,正弦函数反函数在x处的值,即 x = sin y |
acos x | y,余弦函数反函数在x处的值,即 x = cos y |
atan x | y,正切函数反函数在x处的值,即 x = tan y |
acot x | y,余切函数反函数在x处的值,即 x = cot y |
asec x | y,正割函数反函数在x处的值,即 x = sec y |
acsc x | y,余割函数反函数在x处的值,即 x = csc y |
θ | 角度的一个标准符号,不注明均指弧度,尤其用于表示atan x/y,当x、y、z用于表示空间中的点时 |
i, j, k | 分别表示x、y、z方向上的单位向量 |
(a, b, c) | 以a、b、c为元素的向量 |
(a, b) | 以a、b为元素的向量 |
(a, b) | a、b向量的点积 |
a?b | a、b向量的点积 |
(a?b) | a、b向量的点积 |
|v| | 向量v的模 |
|x| | 数x的绝对值 |
Σ | 表示求和,通常是某项指数。下边界值写在其下部,上边界值写在其上部。如j从1到100的和可以表示成:。这表示 1 + 2 + … + n |
M | 表示一个矩阵或数列或其它 |
|v> | 列向量,即元素被写成列或可被看成k×1阶矩阵的向量 |
<v| | 被写成行或可被看成从1×k阶矩阵的向量 |
dx | 变量x的一个无穷小变化,dy, dz, dr等类似 |
ds | 长度的微小变化 |
ρ | 变量 (x2 + y2 + z2)1/2 或球面坐标系中到原点的距离 |
r | 变量 (x2 + y2)1/2 或三维空间或极坐标中到z轴的距离 |
|M| | 矩阵M的行列式,其值是矩阵的行和列决定的平行区域的面积或体积 |
||M|| | 矩阵M的行列式的值,为一个面积、体积或超体积 |
det M | M的行列式 |
M-1 | 矩阵M的逆矩阵 |
v×w | 向量v和w的向量积或叉积 |
θvw | 向量v和w之间的夹角 |
A?B×C | 标量三重积,以A、B、C为列的矩阵的行列式 |
uw | 在向量w方向上的单位向量,即 w/|w| |
df | 函数f的微小变化,足够小以至适合于所有相关函数的线性近似 |
df/dx | f关于x的导数,同时也是f的线性近似斜率 |
f ' | 函数f关于相应自变量的导数,自变量通常为x |
?f/?x | y、z固定时f关于x的偏导数。通常f关于某变量q的偏导数为当其它几个变量固定时df与dq的比值。任何可能导致变量混淆的地方都应明确地表述 |
(?f/?x)|r,z | 保持r和z不变时,f关于x的偏导数 |
grad f | 元素分别为f关于x、y、z偏导数 [(?f/?x), (?f/?y), (?f/?z)] 或 (?f/?x)i + (?f/?y)j + (?f/?z)k; 的向量场,称为f的梯度 |
? | 向量算子(?/?x)i + (?/?x)j + (?/?x)k, 读作 "del" |
?f | f的梯度;它和 uw 的点积为f在w方向上的方向导数 |
??w | 向量场w的散度,为向量算子? 同向量 w的点积, 或 (?wx /?x) + (?wy /?y) + (?wz /?z) |
curl w | 向量算子 ? 同向量 w 的叉积 |
?×w | w的旋度,其元素为[(?fz /?y) - (?fy /?z), (?fx /?z) - (?fz /?x), (?fy /?x) - (?fx /?y)] |
??? | 拉普拉斯微分算子: (?2/?x2) + (?/?y2) + (?/?z2) |
f "(x) | f关于x的二阶导数,f '(x)的导数 |
d2f/dx2 | f关于x的二阶导数 |
f(2)(x) | 同样也是f关于x的二阶导数 |
f(k)(x) semicircle | f关于x的第k阶导数,f(k-1) (x)的导数 |
T | 曲线切线方向上的单位向量,如果曲线可以描述成 r(t), 则T = (dr/dt)/|dr/dt| |
ds | 沿曲线方向距离的导数 |
κ | 曲线的曲率,单位切线向量相对曲线距离的导数的值:|dT/ds| |
N | dT/ds投影方向单位向量,垂直于T |
B | 平面T和N的单位法向量,即曲率的平面 |
τ | 曲线的扭率: |dB/ds| |
g | 重力常数 |
F | 力学中力的标准符号 |
k | 弹簧的弹簧常数 |
pi | 第i个物体的动量 |
H | 物理系统的哈密尔敦函数,即位置和动量表示的能量 |
{Q, H} | Q, H的泊松括号 |
以一个关于x的函数的形式表达的f(x)的积分 | |
函数f 从a到b的定积分。当f是正的且 a < b 时表示由x轴和直线y = a, y = b 及在这些直线之间的函数曲线所围起来图形的面积 | |
L(d) | 相等子区间大小为d,每个子区间左端点的值为 f的黎曼和 |
R(d) | 相等子区间大小为d,每个子区间右端点的值为 f的黎曼和 |
M(d) | 相等子区间大小为d,每个子区间上的最大值为 f的黎曼和 |
m(d) | 相等子区间大小为d,每个子区间上的最小值为 f的黎曼和 |
+: plus(positive正的)
-:minus(negative负的)
*:multiplied by
÷:divided by
=:be equal to
≈:be approximately equal to
():round brackets(parenthess)
[]:square brackets
{}:braces
∵:because
∴:therefore
≤:less than or equal to
≥:greater than or equal to
∞:infinity
LOGnX:logx to the base n
xn:the nth power of x
f(x):the function of x
dx:diffrencial of x
x+y:x plus y
(a+b):bracket a plus b bracket closed
a=b:a equals b
a≠b:a isn't equal to b
a>b:a is greater than b
a>>b:a is much greater than b
a≥b: a is greater than or equal to b
x→∞:x approches infinity
x2:x square
x3:x cube
√ ̄x:the square root of x
3√ ̄x:the cube root of x
3‰:three peimill
n∑i=1xi:the summation of x where x goes from 1to n
n∏i=1xi:the product of x sub i where igoes from 1to n
∫ab:integral betweens a and b
大写 小写 英文注音 国际音标注音 中文注音
Α α alpha alfa 阿耳法
Β β beta beta 贝塔
Γ γ gamma gamma 伽马
Δ δ deta delta 德耳塔
Ε ε epsilon epsilon 艾普西隆
Ζ ζ zeta zeta 截塔
Η η eta eta 艾塔
Θ θ theta θita 西塔
Ι ι iota iota 约塔
Κ κ kappa kappa 卡帕
∧ λ lambda lambda 兰姆达
Μ μ mu miu 缪
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。
发表评论