用ssm框架和vue实现数据【基于数据质量分析ETL框架的设计及实现】
1 数据质量分析的概念 数据质量分析主要是由域分析和过滤器分析两部分组成。以下将分别给以详细的说明。 1.1 域分析 数据质量分析中的域分析就是用来按列分析数据库表,来得出数据的概况信息。其中,域分析主要包括如下内容:一是数据类别分析,所谓的数据类别分析就是用来判断相关数据是否属于标识量、开关量、枚举量、时间、数量、文本等;二是针对数值类型数据的统计分析,主要有频率分析、方差分析以及百分比分析等;三是针对字符类型数据格式的分析,主要是进行模式匹配。数据质量分析中的域分析可以很好的帮助用对数据环境进行充分的了解,以便对数据流进行有效的质量评估和管理。
1.2 过滤器分析
数据质量分析中的过滤器由若干基本规则的逻辑所组成,目前数据质量分析中的过滤器定义的主要规则包括:一是包含规则(CONTAINS);二是等于规则(EQUALS);三是存在规则
(EXISTS)。除此之外,过滤器定义的规则还有范围规则、正则表达式规则、频率规则、类型规则以及唯一规则等。通过这些基本规则的组合可以生成复杂的业务规则,进而通过这些复杂的业务规则来对数据进行评价,常见的评价结果包括:符合规则的记录数、规则明细、总记录数以及正确率等。
2 认识ETL
2.1 ETL概述
1)ETL的概念。ETL是英文Extraction-Transformation-Loading三个首字母的缩写,中文即为数据的提取、转换和加载。ETL在做数据仓库系统时发挥着至关重要的作用。相对于传统数据库技术,ETL并不是面向数学理论基础的,它主要是面向实际工程的应用。从工程应
用的角度来看,ETL就是将要加载处理的数据按照一定的物理数据模型的要求来进行相应的处理操作的,ETL的数据处理过程与工程人员的数据处理经验直接相关,由于ETL处理数据部分的工作在很大程度上决定数据仓库中数据的质量,而且对联机分析处理和数据挖掘结果的质量具有一定的决定作用。
ssm框架实现登录功能 2)ETL的数据处理特点。笔者总结认为,ETL的数据处理主要有如下两个方面的特点:① ETL的数据处理是同步的,而且是按照固定周期运行的。② 一般在ETL数据处理过程中所处理的数据量比较大,为了提高数据的处理效率,都会将数据流动的过程拆分成E、T和L即数据的提取、转换和加载三个过程来进行处理。
2.2 ETL体系结构及其本质
1)ETL的体系结构。一般而言,主流ETL产品框架的体系结构主要有目标数据库、源数据、抽取服务器、Web服务器以及配置工具等组成部分。ETL从源系统中提取数据,转换数据为一个标准的格式,并加载数据到目标数据存储区。ETL系统一般不会单独作为一个项目来做,大多与数据仓库、决策支持等系统一起作为支持系统完成。
2)ETL的本质。如上所述,ETL的过程实际上就是数据流动的过程,其中,数据的清洗、抽取、转换和装载一般是根据用户的实际需要,可以以串行或并行的方式进行操作。而T过程即数据的转换过程作为ETL的核心,一般都是以数据的抽取和装载过程为输入和输出的,也就是说,ETL的其他数据处理过程是以数据的转换过程为前提的。另外,ETL的数据处理过程一般都是以批量为单位进行操作的,因此,ETL的数据处理多采用的是批量数据处理工具,比如常见的Oracle、SQL Loader
以及DB2的autoloader等都是基于ETL的批量数据处理工具。
2.3 ETL的主要功能和特点
1)ETL的主要功能。① 数据集成配置。ETL的数据集成配置功能模块能够为用户提供一个图形用户界面,可以让用户能够通过界面的交互操作,比较容易地实现数据集成的流程、规则的定义;同时ETL的数据集成配置功能提供相应的解析功能,进而可以将配置规则进行解析,在完成规则解析的基础上完成对数据的集成处理操作。② 数据集成服务。ETL的数据集成服务可以为用户提供相应的解析功能,也就是说,用户可以根据数据集成服务模块实现对集成规则的解析服务,然后由相关配置设备来读取这些被解析的规则后生成集成任务,最后在后台由相关设备完成数据的集成。
2)ETL的特点。① 易用性。现在有很多成熟的数据处理工具都提供ETL功能,譬如,常用的powermart以及datastage等数据处理工具。从应用角度来看,ETL的数据处理过程非常
简洁,这些支持ETL技术的相关数据处理工具的应用,给数据仓库工程带来了很大的方便,进而大大的提高了工程人员的工作效率。② 高效性。ETL在执行任务时,可以有效保证抽取任务的正常进行。而且基于ETL的工具为用户提供了图形化界面,用户使用这些数据处理工具能够非常快速地构建一个job来处理某个数据,进而可以提高开发效率。③ 可靠性。ETL在进行数据的抽取时,可以保证源数据到目标数据的抽取精度达99.9%,能确保数据抽取操作的可靠稳定运行。与此同时,ETL还可以对那些因特殊情况无法进行抽取的,或数据抽取中途停止而无法完成抽取操作的信息进行详细的记录,确保以后数据抽取操作的顺利进行。
3 基于数据质量分析ETL框架的设计与实现
3.1 配置工具的设计与实现
配置工具的开发工具一般选择支持C++的集成开发环境。可以根据以下流程进行主要的设计工作:① 数据集成。用户可以根据相关配置工具所提供的图形用户界面(GUI)进行元数据源、目的数据源和抽取规则的录入操作等。并可以实现对这些录入数据信息的定义和数据集成结果的测试。② 资源共享。基于数据质量分析ETL框架克服了传统的抽取-转换-装载(ETL)架构在数据质量控制方面的缺陷,有效解决异地抽取的问题,并且可以对某些表的结构进行共享。
3.2 抽取服务的设计与实现
1)系统参数定义。系统参数一般都是在系统配置参数表中进行定义,其中,系统参数的定义主要包括参数名、参数值及参数说明等。基于数据质量分析ETL框架的系统参数定义如下表所示。
内容仅供参考
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。
发表评论