OpenCVDNN模块教程(四)Mask
本⽂为OpenCV DNN模块官⽅教程的扩展,介绍如何使⽤OpenCV加载TensorFlow Object Detection API训练的模型做实例分割,以Mask-RCNN为例来检测缺陷。TensorFlow Object Detection API的github链接地址如下:
github/tensorflow/models/tree/master/research/object_detection
本⽂以TensorFlow 1.x为例(TF2.x等后续稳定⽀持OpenCV后介绍),介绍OpenCV DNN模块调⽤Mask-RCNN模型做实例分割的步骤如下:
(1) 下载或⾃⼰训练⽣成 .pb 格式的模型⽂件。本⽂以⾃⼰训练好的缺陷检测模型frozen_inference_graph.pb为例:
(2) 使⽤指令⽤.pb⽂件⽣成.pbtxt⽂件, Mask-RCNN使⽤tf_text_graph_mask_rcnn.py,指令如下:
主要参数三个:
--input 输⼊.pb模型⽂件完整路径;
--output 输出.pbtxt⽂件完整路径;
--config 输⼊config⽂件完整路径
完整指令:
python tf_text_graph_mask_rcnn.py --input E:\Practice\TensorFlow\DataSet\mask_defects2\model\export\frozen_inference_graph.pb --output
E:\Practice\TensorFlow\DataSet\mask_defects2\model\export\frozen_inference_graph.pbtxt --config
E:\Practice\TensorFlow\DataSet\mask_defects2\model\train\mask_rcnn_inception_fig
运⾏结果:
(3) 配置OpenCV4.4,加载图⽚测试,代码如下:
1. #include <fstream>
2. #include <sstream>
3. #include <iostream>
4. #include <string.h>
5.
6. #include <opencv2/dnn.hpp>
7. #include <opencv2/imgproc.hpp>
8. #include <opencv2/highgui.hpp>
9.
10.
11. using namespace cv;
12. using namespace dnn;
13. using namespace std;
14.
15. // Initialize the parameters
16. float confThreshold = 0.4; // Confidence threshold
17. float maskThreshold = 0.5; // Mask threshold
18.
19. vector<string> classes;
20. vector<Scalar> colors;
21.
22. // Draw the predicted bounding box, colorize and show the mask on the image
23. void drawBox(Mat& frame, int classId, float conf, Rect box, Mat& objectMask)
24. {
25. //Draw a rectangle displaying the bounding box
26. rectangle(frame, Point(box.x, box.y), Point(box.x + box.width, box.y + box.height), Scalar(255, 178, 50), 5);
27.
28. //Get the label for the class name and its confidence
29. string label = format('%.2f', conf);
30. if (!pty())
31. {
32. CV_Assert(classId < (int)classes.size());
32. CV_Assert(classId < (int)classes.size());
33. label = classes[classId] + ':' + label;
34. }
35.
36. //Display the label at the top of the bounding box
37. int baseLine;
38. Size labelSize = getTextSize(label, FONT_HERSHEY_SIMPLEX, 0.5, 1, &baseLine);
39. box.y = max(box.y, labelSize.height);
40. //rectangle(frame, Point(box.x, box.y - round(1.5*labelSize.height)), Point(box.x + round(1.5*labelSize.width), box.y + baseLine), Scalar(255, 255, 255), FILLED);
41. putText(frame, label, Point(box.x, box.y), FONT_HERSHEY_SIMPLEX, 0.75, Scalar(0, 255, 0), 2);
42.
43. Scalar color = colors[classId%colors.size()];
44.
45. // Resize the mask, threshold, color and apply it on the image
46. resize(objectMask, objectMask, Size(box.width, box.height));
47. Mat mask = (objectMask > maskThreshold);
48. Mat coloredRoi = (0.5 * color + 0.7 * frame(box));
49. vertTo(coloredRoi, CV_8UC3);
50.
51. // Draw the contours on the image
52. vector<Mat> contours;
53. Mat hierarchy;
54. vertTo(mask, CV_8U);
55. findContours(mask, contours, hierarchy, RETR_CCOMP, CHAIN_APPROX_SIMPLE);
56. drawContours(coloredRoi, contours, -1, color, 5, LINE_8, hierarchy, 100);
57. pyTo(frame(box), mask);
58.
59. }
60. // For each frame, extract the bounding box and mask for each detected object
61.
62. void postprocess(Mat& frame, const vector<Mat>& outs)
63. {
64. Mat outDetections = outs[0];
65. Mat outMasks = outs[1];
66.
67. // Output size of masks is NxCxHxW where
68. // N - number of detected boxes
69. // C - number of classes (excluding background)
70. // HxW - segmentation shape
71. const int numDetections = outDetections.size[2];
72. const int numClasses = outMasks.size[1];
73.
74. outDetections = shape(1, al() / 7);
75. for (int i = 0; i < numDetections; ++i)
76. {
77. float score = outDetections.at<float>(i, 2);
78. if (score > confThreshold)
79. {
80. // Extract the bounding box
81. int classId = static_cast<int>(outDetections.at<float>(i, 1));
82. int left = static_cast<int>(ls * outDetections.at<float>(i, 3));
83. int top = static_cast<int>(ws * outDetections.at<float>(i, 4));
84. int right = static_cast<int>(ls * outDetections.at<float>(i, 5));
85. int bottom = static_cast<int>(ws * outDetections.at<float>(i, 6));
86.
87. left = max(0, min(left, ls - 1));
88. top = max(0, min(top, ws - 1));
89. right = max(0, min(right, ls - 1));
90. bottom = max(0, min(bottom, ws - 1));
91. Rect box = Rect(left, top, right - left + 1, bottom - top + 1);
tensorflow入门教程92.
93. // Extract the mask for the object
94. Mat objectMask(outMasks.size[2], outMasks.size[3], CV_32F, outMasks.ptr<float>(i, classId));
94. Mat objectMask(outMasks.size[2], outMasks.size[3], CV_32F, outMasks.ptr<float>(i, classId));
95.
96. // Draw bounding box, colorize and show the mask on the image
97. drawBox(frame, classId, score, box, objectMask);
98.
99. }
100. }
101. }
102.
103.
104. /***************Image Test****************/
105. int main()
106. {
107. // Load names of classes
108. string classesFile = './model2/label.names';
109. ifstream ifs(classesFile.c_str());
110. string line;
111. while (getline(ifs, line)) classes.push_back(line);
112.
113. // Load the colors
114. string colorsFile = './';
115. ifstream colorFptr(colorsFile.c_str());
116. while (getline(colorFptr, line))
117. {
118. char* pEnd;
119. double r, g, b;
120. r = strtod(line.c_str(), &pEnd);
121. g = strtod(pEnd, NULL);
122. b = strtod(pEnd, NULL);
123. Scalar color = Scalar(r, g, b, 255.0);
124. colors.push_back(Scalar(r, g, b, 255.0));
125. }
126.
127. // Give the configuration and weight files for the model
128. String textGraph = './model2/defect_label.pbtxt';
129. String modelWeights = './model2/frozen_inference_graph.pb';
130.
131. // Load the network
132. Net net = readNetFromTensorflow(modelWeights, textGraph);
133.
134. // Open a video file or an image file or a camera stream.
135. string str, outputFile;
136. Mat frame, blob;
137.
138. // Create a window
139. static const string kWinName = 'OpenCV DNN Mask-RCNN Demo';
140.
141. // Process frames.
142. frame = imread('./imgs/4.jpg');
143. // Create a 4D blob from a frame.
144. //blobFromImage(frame, blob, 1.0, ls, ws), Scalar(), true, false);
145. //blobFromImage(frame, blob, 1.0, Size(1012, 800), Scalar(), true, false);
146. blobFromImage(frame, blob, 1.0, Size(800, 800), Scalar(), true, false);
147. //blobFromImage(frame, blob);
148.
149. //Sets the input to the network
150. net.setInput(blob);
151.
152. // Runs the forward pass to get output from the output layers
153. std::vector<String> outNames(2);
154. cout << outNames[0] << endl;
155. cout << outNames[1] << endl;
156. outNames[0] = 'detection_out_final';
156. outNames[0] = 'detection_out_final';
157. outNames[1] = 'detection_masks';
158. vector<Mat> outs;
159. net.forward(outs, outNames);
160.
161. // Extract the bounding box and mask for each of the detected objects
162. postprocess(frame, outs);
163.
164. // Put efficiency information. The function getPerfProfile returns the overall time for inference(t) and the timings for each of the layers(in layersTimes) 165. vector<double> layersTimes;
166. double freq = getTickFrequency() / 1000;
167. double t = PerfProfile(layersTimes) / freq;
168. string label = format('test use time: %0.0f ms', t);
169. putText(frame, label, Point(10, 20), FONT_HERSHEY_SIMPLEX, 0.8, Scalar(0, 0, 255), 2);
170.
171. // Write the frame with the detection boxes
172. Mat detectedFrame;
173. vertTo(detectedFrame, CV_8U);
174. imwrite('result.jpg', frame);
175. //resize(frame, frame, ls / 3, ws / 3));
176. imshow(kWinName, frame);
177. waitKey(0);
178. return 0;
179. }
测试图像:
运⾏结果:
更多OpenCV/Halcon等相关资讯请关注:OpenCV与AI深度学习
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。
发表评论