TCP/IP传输层
一、传输层的主要功能是什么?
分割并重新组装上层提供的数据流,为数据流提供端到端的传输服务
二、传输层如何区分不同应用程序的数据流?
因为,对应传输层而言,它只需要知道目标主机上的哪个服务程序来响应
这个程序,而不需要知道这个服务程序是干什么的。因此,我们只需要能够抽象的
表示出来这些应用程序和服务程序即可。我们使用端口号来抽象标识每个网络程
序。
传输层的TCP和UDP可以接收来自多个应用程序的数据流,用端口号标识他们,然后把他们送给Internet层处理;
同时TCP和UDP接收来自Internet层的数据包,用端口号区分他们,然后交给不同的应用程序。
因此:在同一IP地址(同一个目标主机)上不同的端口号是两个不同的链
接。IP地址和端口号用来唯一的确定网络上数据的目的地。
三、传输层有哪些协议?
传输层的两大协议:TCP(传输控制协议)UDP(用户数据包协议)
TCP是一个可靠的面向链接的协议,UDP是不可靠的或者说无连接的协
议。
可以用打电话和发短信来说明这种关系:
UDP就好似发短信,只管发出去,至于对方是不是空号(网络不可到达)能
不能收到(丢包)等并不关心。
TCP好像打电话,双方要通话,首先,要确定对方不是开机(网络可以到
达),然后要确定是不是没有信号(),然后还需要对方接听(通信链接)。
四、什么是UDP协议?
UDP数据包结构如下图所示
源端口(16)目标端口(16)
报文长度(16)校验和(16)
数据(可变)
UDP为应用程序提供的是一种不可靠的、无连接的分组交付,因此,UDP 报文可能会出现丢失、乱序、重复、延时等问题。
因为它不提供可靠性,它的开销很小。
五、为什么有了UDP,还需要TCP?
问题4中已经说到,UDP为应用程序提供的是一种无连接、不可靠的分组交付。当网络硬件失效或者负担太重时,数据包可能就会产生丢失、重复、延时、乱序的现象。这些都会导致我们的通信不正常。如果让应用程序来担负差错控制的工作,无疑将给程序员带来许多复杂的工作,于是,我们使用独立的通信协议来保证通信的可靠性是非常必要的。
六、什么是TCP协议?
传输控制协议TCP是一个面向链接的、可靠的通信协议。
1. 在开始传输前,需要进行三次握手建立链接
2. 可靠性:在传输过程中,通信双方的协议模块继续进行通信
3. 通信结束后,通信双方都会使用改进的三次握手来关闭链接
TCP数据包结构如下图
源端口(16)目标端口(16)
序号(32)
应答号(32)
头长度(4)
保留(6)编码位
(6)
窗口(16)校验和(16)紧急(16)
可选项(如果有,0或32)
数据(可变)
七、怎么理解协议和程序?
如同我们自定义的应用层协议一样:协议只是给出了一组规范,规定我们应该怎么样(按什么规则)保存数据。
在计算机间传输的永远都是二进制字节码(对于传输层,可以理解为传输的始终是下层的IP数据包),是计算机中的程序通过对这些字节码进行逻辑分析、判断,来控制程序完成差错控制等功能。
至于解析这些字节码的程序,则可以有不同的实现,只要我们按照规则来
解析,并作出相应的控制,我们大可以自己写个程序是实现相应功能。
知道了这些后,显然,我们也可以使用前面说的Jpcap,来自己实现一个基于Java的TCP或者UDP协议。可以参考Linux下的Tcp源码。
/
net/ipv4/udp.c
/net/ipv4/datagram.c
/net/ipv4/tcp_input.c
/net/ipv4//tcp_output.c
/net/ipv4/tcp.c
八、TCP是否真的有链接?
我们都知道,TCP通过完成三次握手来建立链接的,但是这种连接是面向
虚电路的,是物理上不存在的.,只是双方的TCP程序,逻辑上的认为建立了这样
的链接。
九、链接是如何建立的(逻辑上)?
假设:当我们在主机A上启动一个程序,通过TCP去链接主机B上的
9091端口。
整个过程是怎么样的呢?逻辑上我们可以这么理解建立链接的过程:
1.SYN:seq=X;
1.1 A的TCP程序,为这个链接分配一个端口(设为9090)。
1.2 同时逻辑上的将TCP连接的状态设置为:正在连接。(通过在链接状
态表中添加一条记录,记录中状态为:正在连接)
猜想:
TCP程序中,应该有张表来保持链接的状态,其中每个状态应该有:
本机地址(IP加port)、对方地址、链接状态
1.3 同时,随机生成一个初始序列号X,生成一个TCP包,将初始化序列
号X设置为TCP中的序列号,发送给主机B。
2.SYN:seq=Y ACK:ack=X+1;
2.1 B上TCP程序收到该数据包,查询9091端口状态,如果可以链接。
2.2 同样的,在逻辑上的将TCP连接的状态设置为:正在连接
2.3 同时,随机生成一个初始化序列号Y,根据接收的序列号X,生成应答号X+1,生成一个TCP包,将序列号和应答号分别设置到TCP包头中,将TCP数据包发给主机A。
3.SYN:seq=X+1 ACK:ack=Y+1.
3.1 A上的TCP程序接收到数据包,查询9090端口状态。
3.2 根据收到的SYN:seq=Y;ACK:ack=X+1; 封装一个TCP包
SYN:seq=x+1;ACK:ack=Y+1;发送给主机B。同时,TCP程序将链接状态表中该条记录状态设置为已连接。
3.3 主机B收到数据包,TCP程序将链接状态表中该条记录状态设置为已连接。
至此,一个TCP链接建立(三次握手)完成。
我们可以看到:
第一:传送的都是IP数据包,其实只是将收到的数据包交给TCP程序处理。
第二:链接状态,只是TCP程序中的一个逻辑状态。
十:所谓的建立TCP链接开销很大,具体是指什么?
从九中,很容易看出。要简历TCP链接,必须进行三次IP数据包的成功传输。
十一:三次握手的目的是什么?
TCP是面向链接的,在面向链接的环境中,开始传输数据之前,在两个中端之间必须先建立一个链接。建立链接的过程可以确保通信双方在发送应用程序数据包之前,都已经准备好了传送和接收数据。并且使通信双方统一了初始化序列号。
十二:TCP如何提供可靠性?
在传输过程中,通信双方的协议模块继续进行通信,从而确保了传输的可靠性。
针对乱序:在通过三次握手进行链接时,序列号被初始化。在传输过程中,TCP继续使用这个序列号来
标记发送的每一个数据段,没传送一个数据段,序列号加一。接收方依据序列号重装收到的数据段。
针对丢包:在传输过程中,接收方收到一个数据段后,会用ACK应答码向发送端回复一个IP包进行应答,确认号ACK用来告诉发送端哪些数据包已经成功接收,发送方对未被应答的报文段提供重传。
针对重复:接收端收到数据段后,查看序列号,如果已经成功接收改数据包,则丢弃后面这个数据段。
针对延时:延时造成的第一个问题,就是数据包达到接收端时乱序。
当延时严重时,接收端一直未收到数据段,则不会回复ACK,发送端认为丢包,重发。
十三:什么是预期确认?什么是肯定确认与重新传输?哪些情况会重传?
1.确认号ACK会告诉发送端哪些数据段已经成功接收,并且确认号会向发送端指出接收端希望收到的下一个序列号。即,确实号ACK为上个数据序列号+1,这种机制称为预期确认。
2.为了提高效率,我们在发送端,将数据段保存在缓冲区中,直道发送端收到来自接收端的确认号。这种机制被称为“肯定确认与重新传输”。
3.当发送端在给定时间间隔内收不到那个数据段的应答时,发送端就会重传那个数据段。
情况1:网络延时/环路,数据段丢失
tcpip协议分为哪几层作用情况2:网络延时,数据段推迟到达
情况3:数据段成功到达,应答因为1.2不能达到。
十四: TCP中,序列号和应答号有哪些作用?
从以上10,11,12中,很明显的可以看到
依靠序列号重组数据段
依靠数据包消除网络中的重复包
依靠序列号和应答号进行差错重传,提高了TCP的可靠性
十六:为什么需要窗口技术?
前面我们已经说了,TCP的可靠性,是通过预期确认来实现的。即发送方发送一个数据段后,需要得到对方的确认后,才会发送下一个数据段。

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。