基于数字化孪生技术的设备健康状态管理研究
       
 
 
 
 
 
 
     
     
     
 
 
 
导语
本文是基于数字化孪生技术,通过建立通用服务技术平台,进行大数据预处理、数据集成,分析研究工业现场设备的静态数据和实时数据关联规则集成,打破设备管理的传统模式,形成智能决策以支持多部门协同联动的设备健康状态管理体系。该技术的应用可以提高设备管理效率,降低设备维护成本,实现缩短设备检验、维护时间,提高设备利用率,最终形成良好的可复制可推广的设备健康状态管理信息化产品。
关键词:数字化孪生技术;设备健康状态管理
1 数字化孪生技术在信息技术与制造业的融合概况
信息技术与制造业的融合与应用促进了制造业的变革,为应对这场变革,世界各国纷纷提出
先进的制造发展战略,以促进本国制造业的转型升级,如“美国工业互联网”“德国工业4.0”“中国制造2025”等,这些举措的目的都是借助信息技术,实现制造的物理世界和信息世界的互联互通与智能化操作,进而实现智能制造。作为实现物理信息系统融合的关键技术之一,数字化孪生技术近年来得到深入研究。   
数字化孪生(Digital Twin, DT)的概念最早诞生于2003年,是由美国密歇根大学的Grieves在讲授产品全生命周期管理课程时提出的。数字化孪生技术是指用数字技术描述和建模一个与物理实体的特性、行为和性能一致的过程或方法,它是实现物理空间与信息空间,如Gartner公司将数字化孪生列为十大战略科技发展趋势之一;洛克希德·马丁公司将数字化孪生列为未来国防和航空工业十大顶尖技术之首;特别是Rosen等探索了一种产品全生命周期管理方法,该方法通过系统集成对产品物理模型、虚拟模型和工程数据进行管理,从而使与产品相关的数据在其全生命周期的各个阶段都能充分使用,并使数字化孪生技术在建模、仿真和优化技术有了重大进展。因此,基于数字化孪生技术的发源及应用趋势,数字化孪生在产品设计和生产制造中的综合参考模型,车间作为制造执行的基础,是实践智能制造的重要应用场景。
2 数字化孪生技术设备健康状态管理的提出
随着智能制造在国有大中型企业的不断推进,生产数字化已经大规模运用到现代化的生产节奏和模式中,企业的设备管理系统的建设也在不断地完善和提升,交互与融合的有效途径随着智能制造在国有大中型企业的不断推进,生产数字化已经大规模运用到现代化的生产节奏和模式中,企业的设备管理系统的建设也不断地完善和提升,但目前设备的健康管理受到企业管理系统中的运行和实施过程中各项条件和因素的制约,本文基于设备健康管理急需进行一套系统的新管理创模式来引导和实施高密度的数字化生产,因此,提出了数字化孪生技术的设备健康状态管理。
热血铸军魂
3 数字化孪生技术设备健康状态管理内涵和主要做法
3.1 顶层规划融合数字化智能制造,建立健全数字化孪生技术的设备健康管理发展
数字化孪生车间 (Digital Twin Workshop,DTW) 是在新一代信息技术和制造技术驱动下,通过物理车间与虚拟车间的双向真实映射与实时交互,实现物理车间、虚拟车间、车间服务系统的全要素、全流程、全业务数据的集成和融合,在车间孪生数据的驱动下,实现车间生产
要素管理、生产活动计划、生产过程控制等在物理车间、虚拟车间、车间服务系统间的迭代运行,从而在满足特定目标和约束的前提下,达到车间生产和管控最优的一种车间运行新模式。具体如图1。
图1 数字化孪生车间
基于数字化孪生车间的理念,数字化孪生技术的设备健康状态也是依据此工作模式进行顶层的设计。依据数字化孪生技术的设备特点,在结合智能制造的新工业工作生产模式,可将设备的数字化孪生设备健康管理的流程归结如图2所示的四个阶段。
图2 数字化孪生技术设备健康发展最新情况
将数字化孪生的设备健康管理,分为4个阶段:
第1阶段:车间的设备生产管控仅限于物理实体空间,这个阶段的生产要素、生产计划及生产控制主要以人为操作管理为主,设备作为生产工具。
第2阶段:随着计算机信息技术的应用,设备信息空间诞生,使得车间的生产设备管控步入
计算机辅助阶段,各种企业资源管理系统、产品数据管理系统等得以使用,生产计划的下发、人员设备物料等生产要素的管理、生产活动的监控等方面基本实现了信息化,但此阶段车间物理空间与信息空间缺少交互与融合,设备依然作为生产工具。
第3阶段:随着以无线射频识别(Radio Frequency Identification, RFID)、条形码、二维码等为代表的物联网技术以及大数据、云制造等技术的发展,车间中的设备的物理空间与信息空间开始交互与融合,人员、设备、物料等信息实现了实时采集并动态跟踪,生产活动的预测性及对车间不确定性生产扰动的处理能力得以增强,车间的设备生产管控由单点管理逐步发展到集成管理、协同管理和智能管理,这时,设备已经作为管理要素的重要部分,逐渐体现其网络和数据特性,其活跃度和关注度得到了持续的提升。
第4阶段:将数字化孪生技术应用到智能制造厂房中,彻底实现模拟工作状态显示和实物设备之间的有效通信,从而为智能制造生产提供可靠的保障,这时,设备就融合到智能制造中成为一个有机整体,产生其远超于其本质生产的特性,为生产提供数据生产保证。
3.2 建立设备管理全生命周期电子网络化平台,实现设备三维建模孪生技术管理系统
建立全生命周期的综合保障信息平台建设,涵盖设备的自主研制或采购及使用维护全生命期阶段,包括保障性分析、预测与健康管理、交互式电子技术手册、设备维修服务与保障系统(如图3)。
图3 设备一体化信息化平台架构图
数字化孪生技术的设备的健康管理在厂房内首先是要进入六性设计阶段,借助六性协同设计平台(IDS),按“计划—流程—任务”一体化的理念通过六性工作项目与功能设计项目的业务集成、方法集成、工具集成和知识集成,保证六性设计的过程是规范、可控与正确的。通过综合保障分析(LSA)形成设备保障方案、维修程序、保障资源等综合分析。
为提升数字化孪生设备的自主保障能力,在六性设计阶段同步开展健康管理开发系统(PHM)设计,以实现设备使用和维护时发挥出自主保障能力的效果。设备使用后,通过虚拟的PHM系统实时监控装备的状态,并进行健康评估、故障隔离和性能预测。前端研制阶段通过与产品研发平台(PDS)系统进行BOM信息的传递,实现数字化孪生技术的设备保障设计一体化;后端使用阶段通过故障案例向前端设计的闭环迭代,实现装备设计的持续优化。
在服务保障阶段,通过数字化孪生技术的设备服务与维修保障系统(MRO)对所有数字化孪生技术的设备技术状态、维修任务(包括计划修理、预防性维修、应急维修、任务保障、返修件、日常巡检等任务和维修资源等进行全过程、全要素管理,通过企业资源管理系统(ERP)进行保障资源的调配和任务的计划管控;借助质量管理系统(QMS)对数字化孪生技术的设备使用和维护中的所有故障进行FRACAS闭环处理,并将处理结果借助知识管理系统推送至六性一体化设计系统,以实现数字化孪生技术的设备质量的持续优化。
通过三维建模,将生产车间内设备的三维建模与重要参数对应,依据模型仿真适当优化车间(生产线)布局。通过数字化孪生技术的设备的健康管理设备数据库信息:(1)包括维修维保履历、设备利用率、设备抛料率、生产线漫游、设备当前状态、关键配件寿命等;(2)环境监控:包括温度、湿度、噪音等环境状态;(3)视频监控:对关键设备单元的加工过程可进行实景视频监控,对异常状态进行预警;(4)车间巡检:在数字化环境下进行第一人称视角的车间巡检,实现对车间设备状态的实时感知(如图4、5、6)。
图4 三维建模车间
图5 三维建模车间内实体设备选图
图6 三维建模后车间内实体设备放置图
4 应用孪生技术设备系统环境监控实现绿环保稳定生产
相对原先车间人工进行记录能耗、环境监控数据,出现问题时,一般温湿度已经超标严重,发现较晚,通知相关部门人员到问题解决周期时间较长,对生产会产生一定的影响。
通过增加温湿度感知装置、设备电表联网、建立网络数据库,实现对能耗、环境实时监控,并展示发布。同时根据针对各个分点位实际情况,设定不同的能耗、温湿度、洁净度阈值。当感知装置测量结果超过设定阈值时,该区域生产
数据可视化大屏设计状态标为异常,系统将问题推送至对于生产班组进行预警提醒,同时推送部门领导和安全员,确保问题及时响应解决,避免问题扩大(如图7、8)。
图7 生产线能耗环境监控虚拟采集图

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。