数码相机的分辨率

  我们在购买数码相机时,分辨率是一个很重要的指标。早年的数码相机分辨率很低,如CASIOQV-10不到10万像素(320X240)、18万像素的KODAK DC20493X373)其分辨率还比不上现在的摄像手机和摄像头。经过近十年的发展,数码相机的分辨率不断增高,目前已经超过1千万像素。
  就以上述帖子里所举的A70相机设置为2048X1536X16M来说,这就是300万像素。2048X1536就是说在宽度方向有2048个像素,在高度方向有1536个像素。2048X1536=3145728,我们就称其为300万像素(因为1K=10241M=1048576)。

  而后面的16M是指颜深度。每个像素是有颜的,而每像素的颜用3BYTE来记录,分别是红,绿,蓝。每BYTE可以记录256个层次,因此共可记录256X256X256=16777216种不同的颜,即16M,也称为24位颜深度。因此,如果按RGB颜记录一个2048X1536像素的图像文件,就要2048X1536X3=9437184BYTE,即9MB,再加上文件头等其他信息,最终要大于9MB
  不过数码相机平时多数用JPG格式,这是一种有失真的,压缩比较大的图像文件格式,一般情况下,2048X1536像素的JPG文件根据其压缩比的不同文件尺寸也不同,大约在1-2MB左右。同样也可以计算出1600X1200X16M等其他像素的文件大小。

  由此可见,2048X1536X16M1600X1200X16M的照片,包含的像素点是不一样的,也就
是说其信息含量是不一样的。如果用同样的输出分辨率来打印照片,得到的照片大小是不一样的,反过来,如果输出同样大小的照片,照片上单位长度里的像素点数是不一样的,也就是照片的细腻程度是不一样的。
打印机和数码冲印
  从上面的讨论中我们可以看出,数码相机的分辨率并非真正的分辨率(Resolution),而是像素数(Pixel)。这个分辨率与打印或者数码冲印出来的照片质量并无直接的关系。决定照片质量的是打印机或者数码冲印设备的输出分辨率。一般使用的分辨率的显示密度是多少dpi

  打印机的分辨率是指在打印输出时水平和垂直方向上每英寸最多能够打印的点数dpi(dot per inch)。而数码冲印这一类的打印输出设备的分辨率称为ppi(pixel per inch)。打印输出的分辨率越高,产生的点的尺寸就越小,打印出来的图像就越细腻。
  同时我们要注意到,同样像素数的图像文件在打印输出的时候,打印分辩率越高,则输出的图像就越校如同样是一个2560X1920像素的图像文件,用300ppi的分辩率打印输出,可以得到一张8.5X6.4英寸(即10英寸)照片,而用150ppi的分辨率时,就可以得到15X12.8英寸(即20英寸)的照片。
  如果以2048X1536X16M1600X1200X16M1024X768X16M三种分辨率的照片同样数码冲洗成5寸照片,效果会相差多少呢?
  回答这个问题,首先要考虑数码输出设备的分辨率是多少。5英寸的照片的长和宽分别为53.5英寸。如果用富士Frontier 冲印设备的最高分辨率(大约300ppi)来输出。5英寸照片要求的像素是1500X1050。也就是说,2048X1536X16M1600X1200X16M的照片冲印出来的效果是完全没有区别的。即使用1024X768的照片来冲印,效果也差些也是有限的。如果用150ppi的分辨率(这是一般要求下可以接受的分辨率)来输出,上述三种分辨率的照片冲洗效果将毫无区别。
  我们可以说,只有在冲洗大尺寸的照片时,高分辨率才是有意义的。如果只是冲洗5寸、6寸之类的较小的照片时,大分辨率的照片是显示不出优势来的。
  这里顺便简单地说一说ppidpi是两个概念的区别。ppi是关于图像细节的,是指每英寸有多少个像素,而dpi是输出设备的物理能力,对打印机来说就是每英寸打多少个点。现在一般的激光打印机都可以有600dpi的打印分辨率。但是,打印机打印出来的点是没有灰阶的,也就是说只有黑(有点)和白(无点)两种情况。在打印文字或者类似线条图形之类的黑白两值图时,是没有问题的。在打印有灰阶的照片图像时,就不一样了。此时,一般要采用抖动算法,以密度来代替灰度。在这种情况下,一个有灰阶的像素就要用许多无灰阶的的组合来表示。在这个组合中黑点越多,就表示这个像素颜深,越接近于黑,反之,则表示颜淡。因此,打印机的dpi虽然很高,但是打印输出图像时的ppi实际上要小得多。
显示器的分辩率
  网友问:如果2048X1536X16M1600X1200X16M1024X768X16M3种分辨率的照片同样以1024X768(显示器的分辨率)来显示的话,会有什么不同吗?
  说到这个问题,就得谈一谈显示器的分辨率。与数码相机一样,我们所说的显示器分辩率在物理意义上并不是分辩率,而是像素点,也就是指的是屏幕上所能显示的基本像素点的数目。随着显示器技术的发展,显示器的分辩率也越来越高。从早年的CGA320X200)到EGA640X400)、VGA640X480)到目前普遍采用的1024X768。在显示器上显示的图像和字符也越来越精细,质量也越来越高。
 如果要说真正意义上的分辨率,就不仅与显示模式有关,而且与显示器的尺寸有关。以1024X768的情况来说,如果是15英寸的显示器,其对角线为15英寸,宽与高之比为43,因此,其宽度是12英寸。其分辨率应该是每英寸85点左右。而对20英寸的显示器而言,分辨率为每英寸64点。屏幕尺寸大时分辨率反而小了?这并不奇怪,因为屏幕尺寸大了,就可以支持更多的像素模式。如屏幕尺寸为20英寸时,就可有1600X1200或者1920X1440等。
  在1024X768分辨率的显示器上,1024X768的照片在100%显示时也可以看到全幅,而2048X1536X16M1600X1200X16M分辨率的照片在100%显示时就无法看到全幅了。你可以以较小的百分比(如50%)来显示。或者用100%显示,但此时你只能看到一部分,用上下左右移动照片的办法来看其他部分。
扫描仪分辨率

  下面再谈谈扫描仪的分辨率。在对扫描质量的评价中,扫描仪的分辨率是一个十分重要的因素。
  分辨率是指进行数字化时所得到的信息数量或者密度。扫描仪的分辨率也分光学分辨率和内插分辨率。
  作为扫描仪的指标,光学分辨率是指扫描仪的光学系统可以进行扫描采样的最高信息密度(即单位长度内得到的像素数);  而内插分辨率则是进行插值运算后得到的分辨率。很显然,对一台扫描仪的分辨率评价,最重要的是其光学分辨率(就像DC镜头的光学变焦倍数是最重要的,数码变焦只是一种伪变焦而已)。

  在扫描时,具体的扫描分辨率是可以设定的。用高分辨率扫描得到的信息量大,同时产生的文件尺寸也大。因此,并不是把扫描分辨率设定得越高越好的,一般要根据以后打印输出的需要来设定扫描分辨率。
镜头的分辨率
  最后,还得要说一说镜头的分辨率。分辨率是判断镜头好坏的一个重要指标,一般用单位距离里能分辨的线对数(如每毫米线对数lp/mm)来表示。镜头的分辨率一定程度上决定了被摄物通过镜头成像后的清晰程度。
  要说分辨率,首先要搞清楚什么才算是能分辨的,什么是不能分辨的。在光学上有一个标准,称为瑞利判据。我们知道,任何镜头都存在像差,物体上的一点,通过镜头成像后并不是一点,而是一个分布,也称为弥散园。在物体上的很接近的两点如果本来是能分辨的,成像之后就有可能变成不能分辨了。这就引起了像的模糊。
  根据瑞利判据,如果两点之间的光强不超过最大光强的81.1%,我们就能感觉到这两点中间有一个暗区,这两点就是可以分辨的。否则,这两点就会连成一片,我们无法分别这是两点
还是一点。这就是不能分辨。因此,我们说瑞利判据是决定分辨率的依据。尽管这个判据实际上的根据经验而不是根据理论得到的,但这是在光学中受到普遍承认的。

  显然,镜头的像差大小决定了弥散园的大校好的镜头像差较小,分辩率就高,反之反分辨率就低。另外,必须指出,即使在没有像差的理想情况下,由于光的衍射现象的存在,物上一点所成的像也是一个弥散光斑,此时称为爱里斑。爱里斑的大小与光的波长和通光口径有关。可以从理论上推出,爱里斑的直径是 1.22λ/d,其中λ是光的波上,d是通光口径的直径。在某些特定的场合下,对分辨率要求非常高的情况下,爱里斑影响分辨率就不可忽视。如在亚微米大规模集成电路制版光刻工艺中,采用的曝光波长越来越短就是出于这个考虑。
  关于镜头的像差、分辩率以及MTF等话题,日后有机会本人将发专帖进行讨论。
分辨率是和图像相关的一个重要概念,它是衡量图像细节表现力的技术参数。但分辨率的种类有很多,其含义也各不相同。正确理解分辨率在各种情况下的具体含义,弄清不同表示方法之间的相互关系,是至关重要的一步。下面对几种常见的图像输入/输出分辨率及不同图像输入/输出设备分辨率作个介绍,供大家参考。
  图象分辨率
  图象分辨率(Image Resolution:指图象中存储的信息量。这种分辨率有多种衡量方法,典型的是以每英寸的像素数(PPI)来衡量。图象分辨率和图象尺寸的值一起决定文件的大小及输出质量,该值越大图形文件所占用的磁盘空间也就越多。图象分辨率以比例关系影响着文件的大小,即文件大小与其图象分辨率的平方成正比。如果保持图象尺寸不变,将图象分辨率提高一倍,则其文件大小增大为原来的四倍。
  扫描分辨率
  扫描分辨率:指在扫描一幅图象之前所设定的分辨率,它将影响所生成的图象文件的质量和使用性能,它决定图象将以何种方式显示或打印。如果扫描图象用于640×480像素的屏幕显示,则扫描分辨率不必大于一般显示器屏幕的设备分辨率,即一般不超过120DPI。但大多数情况下,扫描图象是为了在高分辨率的设备中输出。如果图象扫描分辨率过低,会导致输出的效果非常粗糙。反之,如果扫描分辨率过高,则数字图象中会产生超过打印所需要的信息,不但减慢打印速度,而且在打印输出时会使图象调的细微过渡丢失。一般情况下,图象分辨率应该是网幕频率的2倍,这是目前中国大多数输出中心和印刷厂都采用的标准。然而实际上,图象分辨率应该是网幕频率的1.5倍,关于这个问题,恐怕会有争议,而具体到不同的图象本身,情况也确实各不相同。要了解详细内容,请看《网屏角度及输出分辨率》。
  网屏分辨率
  网屏分辨率(Screen Resolution:又称网幕频率,指的是打印灰度级图象或分图象所用的网屏上每英寸的点数。这种分辨率通过每英寸的行数(LPI)来表示。
  图象的位分辨率
  图象的位分辨率(Bit Resolution:又称位深,是用来衡量每个像素储存信息的位数。这种分辨率决定可以标记为多少种彩等级的可能性。一般常见的有8位、16位、24位或32位彩。有时我们也将位分辨率称为颜深度。所谓,实际上是指“2”的平方次数,8位即是2的八次方,也就是82相乘,等于256。所以,一副8位彩深度的图象,所能表现的彩等级是256级。
  设备分辨率
  设备分辨率(Device Resolution):又称输出分辨率,指的是各类输出设备每英寸上可产生的点数,如显示器、喷墨打印机、激光打印机、绘图仪的分辨率。这种分辨率通过DPI来衡量,目前,PC显示器的设备分辨率在60120DPI之间。而打印设备的分辨率则在3601440DPI之间。
对扫描仪、打印机及显示器等硬件设备来说,其分辨率用每英寸上可产生的点数即DPIDot
s Per Inch)来度量。
  扫描仪的分辨率要从三个方面来确定:光学部分、硬件部分和软件部分。也就是说,扫描仪的分辨率等于其光学部件的分辨率加上其自身通过硬件及软件进行处理分析所得到的分辨率。光学分辨率是扫描仪的光学部件在每平方英寸面积内所能捕捉到的实际的光点数,是指扫描仪CCD的物理分辨率,也是扫描仪的真实分辨率,它的数值是由CCD的像素点除以扫描仪水平最大可扫尺寸得到的数值。分辨率为1200DPI的扫描仪,其光学部分的分辨率只占400600DPI。扩充部分的分辨率(由硬件和软件所生成的)是通过计算机对图像进行分析,对空白部分进行科学填充所产生的(这一过程也叫插值处理)。光学扫描与输出是一对一的,扫描到什么,输出的就是什么。经过计算机软硬件处理之后,输出的图像就会变得更逼真,分辨率会更高。目前市面上出售的扫描仪大都具有对分辨率的软、硬件扩充功能。有的扫描仪广告上写9600×9600DPI,这只是通过软件插值得到的最大分辨率,并不是扫描仪真正光学分辨率。所以对扫描仪来讲,其分辨率有光学分辨率(或称光学解析度)和最大分辨率之说。
  我们说某台扫描仪的分辨率高达4800DPI(这个4800DPI是光学分辨率和软件差值处理的总和),是指用扫描仪输入图像时,在1平方英寸的扫描幅面上,可采集到4800×4800个像素
点(Pixel)。1英寸见方的扫描区域,用4800DPI的分辨率扫描后生成的图像大小是4800Pixel×4800Pixel。在扫描图像时,扫描分辨率设得越高,生成的图像的效果就越精细,生成的图像文件也越大,但插值成分也越多。
  我们说某台打印机的分辨率为360DPI,是指在用该打印机输出图像时,在每英寸打印纸上可以打印出360个表征图像输出效果的点。表示打印机分辨率的这个数越大,表明图像输出的点就越小,输出的图像效果就越精细。打印机点的大小只同打印机的硬件工艺有关,而与要输出图像的分辨率无关。
  我们说某个品牌的显示器的分辨率为80DPI,是指在显示器的有效显示范围内,显示器的显像设备可以在每英寸荧光屏上产生80个光点。举个例子来说,一台14英寸的显示器(荧光屏对角线长度为14英寸),其点距为0.28mm,那么:显示器分辨率=25.3995mm/inch÷0.28mm/Dot≈90DPI1 inch=25.3995mm)。显示器出厂时一般并不标出表征显示器分辨率的DPI值,只给出点距,我们根据上述公式即可算出显示器的分辨率。根据我们算出的DPI值,我们进而可以推算出显示器可支持的最高显示模式。假设该14英寸显示器荧光屏
有效显示范围的对角线长度为11.5英寸,因显示器的水平方向和垂直方向的显示比例为43
故可设有效显示范围水平宽度为4X英寸,垂直高度为3X英寸,根据数学上的勾股定理,可得X=11.5÷5=2.3英寸。所以有效显示范围宽度为2.3×4=9.2英寸,垂直高度为2.3×3=6.8英寸。最高显示模式约为:8009.2×90×6006.8×90),这时是用一个点(Dot)表示一个像素(pixel)。

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。