人工智能专业最好的学校排名
人工智能专业最好的学校排名
1、南京大学(A+档,全国第1名)
2、西安电子科技大学(A+档,全国第2名)
3、清华大学(A+档,全国第3名)
4、哈尔滨工业大学(A+档,全国第4名)
5、北京大学(A+档,全国第5名)
6、浙江大学(A+档,全国第6名)
7、上海交通大学(A+档,全国第7名)
8、中国科学技术大学(A+档,全国第8名)
9、电子科技大学(A档,全国第9名)
10、东南大学(A档,全国第10名)
具体评估排名结果如下表所示:
注:以上评估结果按“分档”方式呈现,共分为6档,专业综合排名位次为前2%或前2名的为A+级,2% - 10%的为A级,10% - 20%的为B+级,20% - 50%的为B级,50% - 70%的为C级(不发布), 70%以后的为D级(不发布)
计算机专业学校全国排名人工智能专业难学吗?
人工智能专业是一个比较好学的专业,课程难度不大,同时该专业还是一个很不错的专业,前景很好,中国正在产业升级,工业机器人和人工智能方面会是强烈的热点,以后很多东西都是人工智能了。我是桂林电子科技大学18级学生,我有一个认识的学弟就是人工智能专业的,我们学校是2020年才有人工智能这个专业的,下面我来具体介绍一下这个专业吧。
人工智能是研究、开发用于模拟、延伸和扩展人智能的理论、方法、技术及应用系统的一
门新技术科学,也是计算机科学的一个分支。它企图了解智能的实质,可以产出一种新的可以和人类智能相似的方式做出反应的智能机器,该领域的研究主要有机器人、语言识别、图像识别、自然语言处理和专家系统等。
主修课程人工智能专业的核心课程有:专业导论、人工智能数学基础、线性代数 A、概率论与数理统计、程序设计与问题求解、电路与电子技术基础、面向对象编程、算法及数据结构、人工智能基础、数据科学导论、计算机组成原理、机器学习、信息论、机器人学概论、数字信号处理、模式识别、自然语言处理、现代控制理论等。我们在学习中需要注意的是:要认真学习智能的基础理论、基本方法和基本技能,掌握相关应用领域基础知识。还需要具有系统的计算思维和数据思维,具有创新创业意识和国际视野,具有良好的社会人文素养、职业道德和团队精神。
就业前景人工智能专业就业方向主要包括科研机构(机器人研究所等)、软硬件开发人员、高校讲师等。在国内的话就业前景是比较好的,国内产业升级,IT行业的转型工业和机器人和智能机器人以及可穿戴设备的研发将来都是强烈的热点。人工智能目前是一个快速增长的领域,人才需求量大,相比于其他技术岗位,竞争度偏低,薪资相对较高,因此,趁着这个机
遇,人工智能专业是一个很好的选择。小结人工智能这个专业不难学,但是大家也不能太随意,不然也会挂科的哟。并且人工智能专业相当的不错,未来必定是一个人工智能的世界,掌握了人工智能技术,就是一笔不可描述的财富。人工智能不仅能带动国家的发展,还能够方便世界上所有的人,所以,相信自己的感觉,对人工智能感兴趣的同学,来选择这个专业肯定没错的。
人工智能的边界在哪?
关于什么是智能,我们目前尚且无法给出一个精确的定义。就像在图灵机出现之前,我们无法对计算给出一个严格的定义一样。在一个无法定义的领域里辩论,自然是“公说公有理,婆说婆有理”。
ACM图灵大会的主旨演讲者之一是哈佛大学的理论计算机科学家莱斯利·瓦利安特(Leslie Valiant),他因为在并行计算理论和机器学习理论方面的贡献获得了20XX年的图灵奖。他演讲的题目是“什么是可行计算的极限?”(What are the Limits of Feasible Computation?),这为论坛将要展开的讨论提供了理论基础。首先,瓦利安特把计算机科学问题参照物理学分为三个层次:超级普适性(super-generality)、普适性(generality)和数学推断(mathematical conse
quences)。瓦利安特只是比较了物理学和计算机科学,我们在他的基础上加入了人工智能的维度,以便得到更多的启示。物理学中,超级普适性的体现就是最广义的、永恒不变的、可以表达成数学方程的物理学定律,而在计算机科学中对应的就是计算的理论模型,图灵机就是一种计算模型,当然图灵机不是唯一的模型。物理学的普适层存在着定律,如牛顿第二定律、万有引力定律等;在图灵机的框架下,NP完全理论就是普适性的。大概在瓦利安特心目中,计算复杂性是和牛顿定律一样的存在。在数学推断层,物理学有行星椭圆轨道,而理论计算机科学会有各种具体的NP完全的问题。当超级普适层发生变化时,下面的层次也会依次变化,例如,如果计算模型变成了量子计算机,那么类似的复杂性问题就变成了有限错误量子计算多项式时间(Bounded error Quantum Polynomial time, BQP)之类。图1为物理学、计算机科学和人工智能的普适性分层。
当我们分析不同的问题时,会使用不同的计算模型。丘奇-图灵论题(Church-Turing Thesis)是传统的理论计算机科学的支柱,这个论题断言所有的计算模型都是等价的,也就是说,所有足够强的计算模型都是可以互相模拟的。另一个被默认的论题是中国计算机理论科学家洪加威提出的“相似性原则”(Similarity Principle),即所有足够强的计算模型之间的模拟成本都是多项式的。相似性原则也被称为“强丘奇-图灵论题”或“扩展的丘奇-图灵论题”(Extended Ch
urch-Turing Thesis)。“强丘奇-图灵论题”不太被提起,甚至被忽视,主要原因大概是这个原则已经变成计算理论的工作假设,大家已经习以为常。近来的理论研究提出了和图灵机可能不等价的计算模型,它们的计算能力在某种意义上超越了图灵机,也违背了丘奇-图灵论题和强丘奇-图灵论题,有时也被称为“超计算”(hyper-computation)。例如,BSS(Blum-Shub-Smale)实数模型[1]和量子计算机等。BSS的“B”就是本次大会的主旨演讲嘉宾之一丽诺尔·布卢姆(Lenore Blum)。在BSS模型上,实数的四则运算可以在单位时间内完成,这类模型可以展现出和图灵机不同的性质,例如,线性规划在图灵机上有多项式时间的算法,但在BSS上的时间复杂性还未知。三层以上神经网络学习问题在图灵机上是NP完全的,而在BSS上和线性规划等价[2]。
量子计算被认为可能违背“强丘奇-图灵论题”。例如,和网络安全密切相关的素数分解问题在图灵机上被认为是难的,尽管还没有明确的证明,但量子计算机上整数分解的秀尔算法(Shor’s algorithm)有可能是高效的。BSS作为一个数值分析的理论模型,应该是有价值的,但可否实现则存疑;而实用的量子计算机是有可能实现的。“丘奇-图灵论题”和“强丘奇-图灵论题”更像是物理定律而不是数学定理。计算是游走于数学和物理学之间的学问,关于计算和物理的关系,可见图灵研究专家霍奇斯(Hodges)的*[3],以及姚期智为纪念JACM (Journal of t
he ACM)出版50周年写的*[4]。
大会论坛的各位嘉宾虽然都来自计算机科学或者相关学科,和人工智能有着千丝万缕的关系,但他们对人工智能的看法却各有不同,即使我们给完全的外行发个调查问卷,恐怕得来的回答之间的差异与嘉宾们之间的观点差异也差不多。这是人工智能这个特定学科的性质决定的,每个颗粒度足够大或者足够抽象的问题都像是哲学问题。一个实用主义的办法可以把人工智能定义为相关从业者正在进行的研究领域,到他们之间的共同点,求同存异。20XX年之后由深度学习引发的又一次人工智能热潮,使得人们把人工智能的关注点聚焦在机器学习,从而忽视了人工智能的其他分支学科,而深度学习对大数据的依赖也自然造成了对模型的轻视。关心计算机视觉的人很容易借鉴马尔(David Marr)的分层理论。
任何一个实用主义的回答都必须有个参照物,人工智能的参照物是自然智能,或者更具体地说是人类智能。机器在一个特定的领域或任务上已经超越人类是大家的共识,此所谓弱人工智能。目前还没有可以跨任务的机器,当下强人工智能还不是现实,这也是共识。事实上,人工智能的分类常常是按照任务来的,例如计算机视觉(包括模式识别和图像处理等)、自然语言理解、认知与推理、机器人学、博弈论、机器学习等。而美国计算机学会(ACM)在
某些领域里并不活跃,例如机器学习和计算机视觉。如果按照任务来,智能的定义就变成了自底向上的,这也是人工智能作为一个工程领域,从业者对其很自然的态度。不同的人会用不同的术语,一些人称为模型,另一些人称为任务。底层的大数据小任务,到了高层就变成了小数据大任务。这里所谓任务的大小,其实是指任务的复杂度。
智能的任务按照诺贝尔经济奖得主、心理学家丹尼尔·卡尼曼(Daniel Kahneman)的说法可以分为两类,一类是能快速反应的,例如计算机视觉;另一类是需要长时间思考的,例如认知与推理。有人说人类更擅长前一类任务,而机器更擅长后一类任务。人工智能的历史曾有符号主义和连接主义的交替,前一类任务更有效的解决办法是连接主义的深度学习,而后一种任务更像是符号主义的使命。但都有例外,例如深度学习尚没有到自然语言处理的窍门;符号主义在机器定理证明领域,近几年几乎处于停滞的状态。AlphaGo及其一系列衍生程序所依赖的核心算法——强化学习则无法归类到这两派之中,而是自成一派。给人工智能下定义的过程也是一个学习的过程,特别是在没有理论指导下,这个过程尤为艰难,每个泛化推广的企图都会碰到反例。
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。
发表评论