常用函数导数公式大全
导数是微积分中的重要基础概念,用于描述函数在某一点处的变化率。常用函数的导数公式如下:
1. 常数函数的导数为零。
2. x 的幂函数的导数:y" = yx(x-1)。
3. 指数函数的导数:y" = eax。
4. 对数函数的导数:y" = loga(ex)。
5. 三角函数的导数:
- 正弦函数的导数:y" = cosx。
- 余弦函数的导数:y" = -sinx。
- 正切函数的导数:y" = tanx。
- 余切函数的导数:y" = cotx。
6. 反三角函数的导数:
- 反正弦函数的导数:y" = -cosx。
- 反余弦函数的导数:y" = sinx。
- 反正切函数的导数:y" = -tanx。
- 反余切函数的导数:y" = cotx。
7. 双曲函数的导数:y" = -(abx^2 + 2acy + cy^2)。
8. 反双曲函数的导数:y" = ab(bx^2 - 2acy + cy^2) + 2abcdy。
9. 幂函数的导数:y" = yx^(x-1)。
10. 递归函数的导数:y" = f(x, y) - f(x-1, y)。
幂函数求导公式表
这些导数公式只是部分常用函数的导数,还有许多其他函数的导数公式。在实际应用中,需要根据具体情况选择适合的函数,并计算出其导数。
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。
发表评论