DDR II内存技术详解
DDR2(Double Data Rate 2)综述:
回想起DDR的发展历程,从DDR200经过DDR266、DDR333到今天的双通道DDR400、DDR533技术,第一代DDR的发展已经走到了技术的极限。由于DDR-I架构的局限性,当频率达到400MHz后,就很难再有所提升,而随着新的处理器技术不断发展,前端总线对内存带宽的要求却越来越高,老迈的DDR SDRAM已经无法胜任,拥有更高更稳定运行频率的内存将是大势所趋,DDR II不可阻挡地走到了大众面前。
相对来说,作为接班人的DDR-Ⅱ在总体上仍保留了DDR-I的大部分特性,相比DDR-I的设计变动并不大,即使针脚数发生了改变,但仍可以强行将DDR II的内存插入到DDR-I的DIMM槽中,这也是需要大家注意的地方。总体而言,DDR-Ⅱ主要进行了以下几点改进:
1.改进针脚设计:DDR2的针脚数量为240针,而DDR内存为184针。(注:DDR-II针脚数量有200Pin、220Pin、240Pin三种,其中240Pin的DDR-Ⅱ将用于桌面PC系列)
1.改进针脚设计:DDR2的针脚数量为240针,而DDR内存为184针。(注:DDR-II针脚数量有200Pin、220Pin、240Pin三种,其中240Pin的DDR-Ⅱ将用于桌面PC系列)
2.降低工作电压:DDR2内存的VDIMM电压为1.8V,也和DDR内存的2.5V不同。
3.改进封装方式:它采用了更为先进的FBGA封装方式替代了传统的TSOP/TSOP-II方式。
4.更低的延迟时间:DDR2内存的延迟时间介于1.8ns到2.2ns之间(由厂商根据工作频率不同而设定),远低于DDR的2.9ns。由于延迟时间的降低,从而使DDR2可以达到更高的频率,最高可以达到1GHz以上的有效频率。
5. 4bit Prefect架构(4位数据预读取):这也是DDR II内存能在相同的核心频率下,达到更高的数据传输率的关键技术之一。
6.OCD(Off-Chip Driver离线驱动调校):使用OCD通过减少DQ-DQS的倾斜来提高信号的完整性;通过控制电压来提高信号品质。(OCD功能在普通台式机上并没有什么作用,其优点主要体现在服务器领域)
7.ODT(On Die Terminator片内终结电阻):终结电阻器可以和内存颗粒的"特性"相符,从而减少内存与主板的兼容问题的出现。
8.Posted CAS功能:Posted CAS是为了解决DDR内存中指令冲突问题,提高DDR II内存的利用效率而设计的功能。(Posted CAS功能的优势只有在那些读写命令非常频繁的运作环境下才能体现,对于一般的应用来说,开启Posted CAS功能反而会降低系统的整体性能)
DDR与DDR II对比表:
DDR SDAMR | DDR II SDRAM | |
时钟频率 | 100/133/166/200MHz | 200/266/333MHz |
数据传输率 | 200/266/333/400MBPS | 400/533/667MBPS |
工作电压 | 2.5V | 1.8V |
针脚数 | 184Pin | 200Pin、220Pin、240Pin(240Pin为主流标准) |
封装技术 | TSOP-II/CSP | CSP(FBGA)封装 |
最大功率 | 418毫瓦 | 318毫瓦 |
预取设计 | 2Bit | 4Bit |
突发长度 | 2/4/8 | 4/8 |
L-BANK数量 | 最多4个 | 最多8个 |
CL值 | 1.5、2.5、3.5、3 | 3、4、5 |
AL值 | 无 | 0、1、2、3、4 |
接口标准 | SSTL_2 | SSTL_18 |
系统最高P-BANK数量 | array工艺详解 8 | 4 |
新增特性 | COD、ODT、POSTED CAS | |
DDR II内存技术详解
1、改进针脚设计
虽说DDR-Ⅱ是在DDR的基础之上改进而来的,外观、尺寸上与目前的DDR内存几乎一样,但为了保持较高的数据传输率,适合电气信号的要求, DDR-Ⅱ对针脚进行重新定义,采用了双向数据控制针脚,针脚数也由DDR的184Pin变为240Pin(注:DDR-II针脚数量有200Pin、220Pin、240Pin三种,其中240Pin的DDR-Ⅱ将用于桌面PC系列。)
2、更低的工作电压
由于DDR-II内存使用更为先进的制造工艺(DDRII内存将采用0.09微米的制作工艺,其内存容量可以达到1GB到2GB,而随后DDRII内存将会在制造上进一步提升为更加先进的0.065微
虽说DDR-Ⅱ是在DDR的基础之上改进而来的,外观、尺寸上与目前的DDR内存几乎一样,但为了保持较高的数据传输率,适合电气信号的要求, DDR-Ⅱ对针脚进行重新定义,采用了双向数据控制针脚,针脚数也由DDR的184Pin变为240Pin(注:DDR-II针脚数量有200Pin、220Pin、240Pin三种,其中240Pin的DDR-Ⅱ将用于桌面PC系列。)
2、更低的工作电压
由于DDR-II内存使用更为先进的制造工艺(DDRII内存将采用0.09微米的制作工艺,其内存容量可以达到1GB到2GB,而随后DDRII内存将会在制造上进一步提升为更加先进的0.065微
米制作工艺,这样DDRII内存的容量可以达到4GB。)和对芯片核心的内部改进,DDRII内存将把工作电压降到1.8V,这就预示着DDRII内存的功耗和发热量都会在一定程度上得以降低:在533MHz频率下的功耗只有304毫瓦(而DDR在工作电压为2.5V,在266MHZ下功耗为418毫瓦)。不过降低工作电压也来了一个问题:在DDR2初始的200-266MHz的时钟速度上, 当模块中组装了32个DRAM芯片时,由于DDR2的核心电压只有1.8V,使得DDR2的边沿斜率比DDR慢。边沿斜率降低的结果是:同一个更高的电压信号相比,电压信号上升时间加长,这加大了制造上的难度。
3、更小的封装
目前DDR内存主要采用TSOP-Ⅱ封装,而在DDRⅡ时代,TSOP-Ⅱ封装将彻底退出内存封装市场,改用更先进的CSP(FBGA)无铅封装技术,它是比TSOP-Ⅱ更为贴近芯片尺寸的封装方法,并且由于在晶圆上就做好了封装布线,在可靠性方面可以达到了更高的水平。DDR II将有两种封装形式,如果数据位宽是4bit/8bit,则采用64-ball的FBGA封装,数据位宽是16bit,则采用84-ball的FBGA封装。
3、更小的封装
目前DDR内存主要采用TSOP-Ⅱ封装,而在DDRⅡ时代,TSOP-Ⅱ封装将彻底退出内存封装市场,改用更先进的CSP(FBGA)无铅封装技术,它是比TSOP-Ⅱ更为贴近芯片尺寸的封装方法,并且由于在晶圆上就做好了封装布线,在可靠性方面可以达到了更高的水平。DDR II将有两种封装形式,如果数据位宽是4bit/8bit,则采用64-ball的FBGA封装,数据位宽是16bit,则采用84-ball的FBGA封装。
4、更低的延迟时间,
图-1 延迟时间示意图
在DDR2中,整个内存子系统都重新进行了设计,大大降低了延迟时间,延迟时间介于1.8ns到2.2ns之间(由厂商根据工作频率不同而设定),远低于DDR的2.9ns。由于延迟时间的降低,从而使DDR2可以达到更高的频率,最高可以达到1GHz以上的有效频率。而DDR1由于已经接近了其物理极限,其延迟时间无法进一步降低,这也是为什么DDR1的最大运行频率不能再有效提高的原因之一。
5、采用了4bit Prefect架构
图-2 4bit Prefect示意图
DDR-Ⅱ在DDR的基础上之上新增4位数据预取的特性,这也是DDR II的关键技术之一。现在
的DRAM内部都采用了4bank的结构,内存颗粒内部单元我们称之为Cell,它是由一组Memory Cell Array构成,也就是内存单元队列。目前内存颗粒的频率分成三种,一种是DRAM核心频率,一种是时钟频率,还有一种是数据传输率。
在SDRAM中,SDRAM也就是同步DRAM,它的数据传输率是和时钟周期同步的,SDRAM的DRAM核心频率和时钟频率以及数据传输率都一样。以PC-133SDRAM为例,它的核心频率/时钟频率/数据传输率分别是133MHz/133MHz/133Mbps。
在DDR I SDRAM中,核心频率和时钟频率是一样的,而数据传输率是时钟频率的两倍,关于这点我们都已经非常的清楚了,DDR也就是Double data rating内存可以在每个时钟周期的上升延和下降延传输数据,也就是一个时钟周期可以传输2bit数据,因此DDR I的数据传输率是时钟频率的两倍。以DDR266 SDRAM为例,它的核心频率/时钟频率/数据传输率分别是133MHz/133MHz/266Mbps。目前JEDEC标准中的DDR I SDRAM的最高标准是DDR400,它的核心频率/时钟频率/数据传输率分别是200MHz/200MHz/400Mbps。颗粒内部的基本组成单元cell的工作频率为200MHz,这个频率再提高会带来稳定性和成本方面的问题。
在SDRAM中,SDRAM也就是同步DRAM,它的数据传输率是和时钟周期同步的,SDRAM的DRAM核心频率和时钟频率以及数据传输率都一样。以PC-133SDRAM为例,它的核心频率/时钟频率/数据传输率分别是133MHz/133MHz/133Mbps。
在DDR I SDRAM中,核心频率和时钟频率是一样的,而数据传输率是时钟频率的两倍,关于这点我们都已经非常的清楚了,DDR也就是Double data rating内存可以在每个时钟周期的上升延和下降延传输数据,也就是一个时钟周期可以传输2bit数据,因此DDR I的数据传输率是时钟频率的两倍。以DDR266 SDRAM为例,它的核心频率/时钟频率/数据传输率分别是133MHz/133MHz/266Mbps。目前JEDEC标准中的DDR I SDRAM的最高标准是DDR400,它的核心频率/时钟频率/数据传输率分别是200MHz/200MHz/400Mbps。颗粒内部的基本组成单元cell的工作频率为200MHz,这个频率再提高会带来稳定性和成本方面的问题。
而在DDR II SDRAM中,核心频率和时钟频率已经不一样了,由于DDR II采用了4bit Prefetch技术。Prefetch可以意译为"数据预取"技术,可以认为是端口数据传输率和内存Cell之间数据读/写之间的倍率,如DDR I为2bit Prefetch,因此DDR I的数据传输率是核心Cell工作频率的两部。DDR II采用了4bit Prefetch架构,也就是它的数据传输率是核心工作频率的四倍。实际上数据先输入到I/O缓冲寄存器,再从I/O寄存器输出。DDR II 400 SDRAM的核心频率/时钟频率/数据传输率分别是100MHz/200MHz/400Mbps。大家要注意的是,DDR II 400 SDRAM的核心频率和DDR I 200是一样的,但是DDR II 400的数据传输率是DDR I 200的两倍。因此,DDR-Ⅱ虽然实现了4-bit预取,但在实际效能上,与DDR是一样的。因此在相同的核心频率下,DDR-Ⅱ达到了两倍于DDR的的带宽的水平有一个前提条件,那就是DDR-Ⅱ的外部时钟频率也是DDR和SDRAM的两倍。
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。
发表评论