有一二叉树, 前序遍历顺序为 a b c d e f g 中序遍历顺序为 b a d c f g e
二叉树前序中序后序图解二叉树:
前序遍历A-B-D-F-G-H-I-E-C
中序遍历F-D-H-G-I-B-E-A-C
后序遍历F-H-I-G-D-E-B-C-A
前序(根左右),中序(左根右),后序(左右根)
例题1:
已知某二叉树的前序遍历为A-B-D-F-G-H-I-E-C,中序遍历为F-D-H-G-I-B-E-A-C,请还原这颗二叉树。
解题思路:
从前序遍历中,我们确定了根结点为A,在从中序遍历中得出 F-D-H-G-I-B-E在根结点的左边,
C在根结点的右边,那么我们就可以构建我们的二叉树的雏形。
那么剩下的前序遍历为B-D-F-G-H-I-E,中序遍历为F-D-H-G-I-B-E, B就是我们新的“根结点”,从中序遍历中得出F-D-H-G-I在B的左边,E在B的右边,继续构建
那么剩下的前序遍历为D-F-G-H-I,中序遍历为F-D-H-G-I,D就是我们新的“根结点”,从中序遍历中得出F在D的左边,H-G-I在D的右边,继续构建
那么剩下的前序遍历为G-H-I,中序遍历为H-G-I,G就是我们新的“根结点”,从中序遍历中得出H在G的左边,I在G的右边,继续构建
例题2:
已知某二叉树的中序遍历为F-D-H-G-I-B-E-A-C,后序遍历为F-H-I-G-D-E-B-C-A,请还原这颗二叉树。
解题思路:
从后序遍历中,我们确定了根结点为A,在从中序遍历中得出 F-D-H-G-I-B-E 在根结点的左
边,C在根结点的右边,那么我们就可以构建我们的二叉树的雏形。之后就是新根节点B,FDHGI在根左,E在根右。在之后就是新根D,F根左,HGI根右,然后就差不多了。
就像恢复前中顺序的二叉树一样,我们也可以恢复中后顺序的二叉树。
你不能用光学前序遍历和后序遍历来恢复二叉树。
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。
发表评论