指数函数公式
指数函数公式:y=a^xa为常数且以a>0,a≠1。函数的定义域是R。在指数函数的定义表达式中,在a^x前的系数必须是数1,自变量x必须在指数的位置上,且不能是x的其他表达式。
指数函数基本性质
(1)指数函数的定义域为R,这里的前提是a大于0且不等于1。对于a不大于0的情况,则必然使得函数的定义域不连续,因此我们不予考虑,同时a等于0函数无意义一般也不考虑。
(2)指数函数的值域为0,+∞。
(3)函数图形都是上凹的。
(4)a>1时,则指数函数单调递增;若0<a<1,则为单调递减的。
(5)可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(不等于0)函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。
(6)函数总是在某一个方向上无限趋向于X轴,并且永不相交。
指数函数定义(7)函数总是通过(0,1)这点,若y=a^x+b,则函数定过点0,1+b
(8)指数函数无界。
(9)指数函数是非奇非偶函数
(10)指数函数具有反函数,其反函数是对数函数,它是一个多值函数。
指数函数求导公式
y=a^x
两边同时取对数:
lny=xlna
两边同时对x求导数:
==>y'/y=lna
==>y'=ylna=a^xlna
感谢您的阅读,祝您生活愉快。
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。
发表评论