开关电源工作原理
目前常见的电源在主要有两种电源类型:线性电源(linear)和开关电源(switching)。
一、线性电源
线性电源主要包括工频变压器、输出整流滤波器、控制电路、保护电路等。
工作过程:先将220 V市电通过变压器转为低压交流电,比如说12V,然后再通过一系列的二极管或整流桥堆进行整流,将低压AC交流电转化为脉动电压(配图1和2中的“3”);再通过电容对脉动电压进行滤波,经过滤波后的低压交流电转换成DC直流电(配图1和2中的“4”);此时得到的低压直流电依然不够纯净,会有一定的波动(这种电压波动就是我们常说的纹波),要想得到高精度的稳定的直流电压,还需要稳压二极管或者电压反馈电路调整输出电压。最后,我们就可以得到纯净的低压DC直流电输出了(配图1和2
中的“5”)。
配图1:标准的线性电源设计图
配图2:线性电源的波形
线性电源的优点:纹波小,调整率好,对外干扰小。适合用于模拟电路,各类放大器等低功耗设备。
线性电源的缺点:体积大,笨重,效率低、发热量也大。需要庞大而笨重的变压器,所需的滤波电容的体积和重量也相当大,线性电源的调整管工作在放大状态,因而发热量大,效率低(35%左右),需要加体积庞大的散热片,而且还需要同样也是大体积的工频变压器,当要制作多组电压输出时变压器会更庞大。对于高功耗设备而言,线性电源将会力不从心。
二、开关电源
开关电源是采用功率半导体器件作为开关元件,通过周期性通断开关,控制开关元件的占空比来调整输出电压。开关电源的工作原理,简单的说是将交流电先整流成直流电,再将直流逆变成交流电,再整流输出成所需要的直流电压。
①交流电源经整流滤波成直流;
②通过高频PWM(脉冲宽度调制)信号控制开关管进行高速的导通与截止,将直流电转化为高频率的交流电提供给开关变压器进行变压;
③开关变压器次级感应出高频交流电压,经整流滤波变成直流电供给负载;
④输出部分通过一定的电路反馈给控制电路,控制PWM占空比,以达到稳定输出的目的。
开关电源的主要优点:体积小、重量轻(体积和重量只有线性电源的20~30%)、效率高(一般为60~70%,而线性电源只有30~40%)、自身抗干扰性强、输出电压范围宽、模块化。
开关电源的主要缺点:
由于逆变电路中会产生高频电压,对周围设备有一定的干扰。需要良好的屏蔽及接地。
1、电路组成
开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM控制器电路、输出整流滤波电路组成。辅助电路有输入过欠压保护电路、输出过欠压保护电路、输出过流保护电路、输出短路保护电路等。开关电源的电路组成方框图如下:
2、开关电源各功能电路详解
⑴、AC输入整流滤波电路
①防雷电路:当有雷击,产生高压经电网导入电源时,由MOV1、MOV2、MOV3:
F1、F2、F3、FDG1组成的电路进行保护。当加在压敏电阻两端的电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3会烧毁保护后级电路。
②输入电磁干扰滤波电路(EMI):消除来自电网,如电动机的启动、电器的开关、雷击等产生的干扰,同时也防止开关电源产生的高频噪声向电网扩散。C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪涌电流。因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。
③整流滤波电路:将电网输入电压进行整流滤波,为变换器提供直流电压。交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。若C5容量变小,输出的交流纹波将增大。
⑵、功率因数校正电路 PFC (power factor correction)
PFC,意思是功率因数校正,作用是对输入电流波形进行控制,使其同步输入电压波形。功率因数,指的是有效功率与总耗电量之间的关系,基本上功率因数可以衡量电力被使用的程度,功率因数值越大,代表其电力利用率越高。开关电源是一种电容输入型电路,其电流和电压之间的相位差会造成交换功率的损失,而PFC电路就是为了提高功率因数,提高交流电转直流电的效率。PFC 电路分为两种,一种是被动式(无源)PFC,另一种是主动式PFC(有源)电路。
原理示意图:
工作原理:
输入电压经L1、L2、L3等组成的EMI滤波器,BRG1整流一路送PFC电感,另
一路经R1、R2分压后送入PFC控制器作为输入电压的取样,用以调整控制信号的占空比,即改变Q1的导通和关断时间,稳定PFC输出电压。L4是PFC电感,它在Q1导通时储存能量,在Q1关断时施放能量。D1是启动二极管。D2是PFC整流二极管,C6、C7滤波。PFC电压一路送后级电路,另一路经R3、R4分压后送入PFC控制器作为PFC输出电压的取样,用以调整控制信号的占空比,稳定PFC输出电压。
(3)、 DC输入滤波电路
①输入滤波电路:C1、L1、C2组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。C3、C4为安规电容,L2、L3为差模电感。
② R1、R2、R3、Z1、C6、Q1、Z2、R4、R5、Q2、RT1、C7组成抗浪涌电路。在起机的瞬间,由于C6的存在Q2不导通,电流经RT1构成回路。当C6上的电压充至Z1的稳压值时Q2导通。如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增大,Q1导通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。
(4)、功率变换电路
是开关电源的关键部分。它把直流电压变换成高频交流电压,并且起到将输出部分与输入电网隔离的作用。
常见的原理图:
工作原理:
模块电源是什么意思R4、C3、R5、R6、C4、D1、D2组成缓冲器,和开关MOS管并接,使开关管电压应力减少,EMI减少,不发生二次击穿。在开关管Q1关断时,变压器的原边线圈易产生尖峰电压和尖峰电流,这些元件组合一起,能很好地吸收尖峰电压和电流。从R3测得的电流峰值信号参与当前工作周波的占空比控制,因此是
当前工作周波的电流限制。当R5上的电压达到1V时,UC3842停止工作,开关管Q1立即关断。
R1和Q1中的结电容CGS、CGD一起组成RC网络,电容的充放电直接影响着开关管的开关速度。R1过小,易引起振荡,电磁干扰也会很大;R1过大,会降低开关管的开关速度。Z1通常将MOS管的GS电压限制在18V以下,从而保护了MOS 管。
Q1的栅极受控电压为锯形波,当其占空比越大时,Q1导通时间越长,变压器所储存的能量也就越多;当Q1截止时,变压器通过D1、D2、R5、R4、C3释放能量,同时也达到了磁场复位的目的,为变压器的下一次存储、传递能量做好了准备。IC根据输出电压和电流时刻调整着⑥脚锯形波占空比的大小,从而稳定了整机的输出电流和电压。 C4和R6为尖峰电压吸收回路。 4、推挽式功率变换电路: Q1和Q2将轮流导通。
推挽式功率变换电路: Q1和Q2将轮流导通。
有驱动变压器的功率变换电路:T2为驱动变压器,T1为开关变压器,TR1为电流环。
(5)、输出整流滤波电路
①、正激式整流电路
T1为开关变压器,其初极和次极的相位同相。D1为整流二极管,D2为续流二极管,R1、C1、R2、C2为削尖峰电路。L1为续流电感,C4、L2、C5组成π型滤波器。
②、反激式整流电路:
T1为开关变压器,其初极和次极的相位相反。D1为整流二极管,R1、C1为削尖峰电路。L1为续流电感,R2为假负载,C4、L2、C5组成π型滤波器。③、同步整流电路

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。