傅里叶变换及其应用
一. 傅里叶变换
傅里叶变换(Fourier变换)是一种线性的积分变换。因其基本思想首先由法国学者约瑟夫·傅里叶系统地提出,所以以其名字来命名以示纪念。傅里叶变换是一种线性的积分变换,在物理学声学光学结构动力学数论组合数学概率论统计学信号处理密码学海洋学通讯等领域都有着广泛的应用。
傅里叶变换能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。在不同的研究领域,傅里叶变换具有多种不同的变体形式,如快速傅里叶变换和离散傅里叶变换。
    正弦基函数是微分运算的本征函数,从而使得线性微分方程的求解可以转化为常系数的代数方程的求解。在线性时不变的物理系统内,频率是个不变的性质,从而系统对于复杂激励的响应可以通过组合其对不同频率正弦信号的响应来获取。
二. 计算方法
连续傅里叶变换将平方可积的函数ft)表示成复指数函数的积分或级数形式。
这是将频率域的函数F(ω)表示为时间域的函数ft)的积分形式。
可以把傅里叶变换也成另外一种形式:
可以看出,傅里叶变换的本质是内积,三角函数是完备的正交函数集,不同频率的三角函数的之间的内积为0,只有频率相等的三角函数做内积时,才不为0
下面从公式解释下傅里叶变换的意义
因为傅里叶变换的本质是内积,所以f(t)求内积的时候,只有f(t)中频率为的分量才会有内积的结果,其余分量的内积为0。可以理解为f(t)上的投影,积分值是时间从负无穷到正无穷的积分,就是把信号每个时间在的分量叠加起来,可以理解为f(t)上的投影的叠加,叠加的结果就是频率为的分量,也就形成了频谱。
傅里叶逆变换的公式为
下面分析傅里叶逆变换的意义
对一个信号做傅里叶变换,然后直接做逆变换,这样做是没有意义的,在傅里叶变换和傅里叶逆变换之间有一个滤波的过程。将不要的频率分量给滤除掉,然后再做逆变换,就得到了想要的信号。比如信号中掺杂着噪声信号,可以通过滤波器将噪声信号的频率给去除,再做傅里叶逆变换,就得到了没有噪声的信号。
连续傅里叶变换的优缺点:
优点:频率的定位很好,通过对信号的频率分辨率很好,可以清晰的得到信号所包含的频率成分,也就是频谱。
缺点:因为频谱是时间从负无穷到正无穷的叠加,所以,知道某一频率,不能判断,该频率的时间定位。不能判断某一时间段的频率成分。
三. 简介离散傅里叶变换的应用
DFT在诸多多领域中有着重要应用,下面仅是颉取的几个例子。需要指出的是,所有DFT的实际应用都依赖于计算离散傅里叶变换及其逆变换的快速算法,即快速傅里叶变换(快速傅里叶变换(即FFT)是计算离散傅里叶变换及其逆变换的快速算法。)。
1.频谱分析
DFT是连续傅里叶变换的近似。因此可以对连续信号x(t)均匀采样并截断以得到有限长的离散序列,对这一序列作离散傅里叶变换,可以分析连续信号x(t)频谱的性质。前面还提到DFT应用于频谱分析需要注意的两个问题:即采样可能导致信号混叠和截断信号引起的频谱泄漏。可以通过选择适当的采样频率(见奈奎斯特频率)消减混叠。选择适当的序列长度并加窗可
以抑制频谱泄漏。
2.数据压缩
由于人类感官的分辨能力存在极限,因此很多有损压缩算法利用这一点将语音、音频、图像、视频等信号的高频部分除去。高频信号对应于信号的细节,滤除高频信号可以在人类感官可以接受的范围内获得很高的压缩比。这一去除高频分量的处理就是通过离散傅里叶变换完成的。将时域或空域的信号转换到频域,仅储存或传输较低频率上的系数,在解压缩端采用逆变换即可重建信号。
四. 简介快速傅里叶变换的应用
离散傅里叶变换(DFT) 余弦函数的傅里叶变换公式存在的不足是计算量太大,很难进行实时处理。计算一个N 点的DFT ,一般需要次复数乘法和N(N-1)次复数加法运算。因此,N较大或要求对信号进行实时处理时,往往难以实现所需的运算速度。
1965,J.W.CoolyJ.W.Tukey发现了DFT的一种快速算法,经其他学者进一步改进, 很快形成了一套高效运算方法,这就是现在通用的快速傅里叶变换, 简称FFT
快速傅里叶变换的产生,使得傅里叶变换大为简化,在不牺牲耗电量的条件下提高了系统的运算速度,增强了系统的综合能力,提高了运算速度,因此快速傅里叶变换在生产和生活中都有着非常重要的作用,对于学习掌握都有着非常大的意义。

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。