2-1 画出下列各时间函数的波形图,注意它们的区别
1)x1(t) = sin t·u(t)
2)x2(t) = sin[ ( t – t0 ) ]·u(t)
3)x3(t) = sin t·u ( t – t0 )
4)x2(t) = sin[ ( t – t0 ) ]·u ( t – t0 )
2-2 已知波形图如图2-76所示,试画出经下列各种运算后的波形图
(1)x ( t-2 )
(2)x ( t+2 )
(3)x (2t)
(4)x ( t/2 )
(5)x (-t)
(6)x (-t-2)
x (-t-2周期信号的傅里叶变换公式)
(7)x ( -t/2-2 )
(8)dx/dt
2-3 应用脉冲函数的抽样特性,求下列表达式的函数值
(1)δ(t) dt = x(-t0)
(2)δ(t) dt = x(t0)
(3) u(t -) dt = u()
(4) u(t – 2t0) dt = u(-t0)
(5)δ(t+2) dt = e2-2
(6)δ(t-) dt = +
(7)
=–
= 1- = 1 – cosΩt0 + jsinΩt0
2-4 求下列各函数x1(t)与x2(t) 之卷积,x1(t)* x2(t)
(1) x1(t) = u(t), x2(t) = e-at · u(t) ( a>0 )
x1(t)* x2(t) = = =
(2) x1(t) =δ(t+1) -δ(t-1) , x2(t) = cos(Ωt +) · u(t)
x1(t)* x2(t) =
= cos[Ω(t+1)+]u(t+1) – cos[Ω(t-1)+]u(t-1)
(3) x1(t) = u(t) – u(t-1) , x2(t) = u(t) – u(t-2)
x1(t)* x2(t) =
当 t <0时,x1(t)* x2(t) = 0
当 0<t <1时,x1(t)* x2(t) = = t
当 1<t <2时,x1(t)* x2(t) = = 1
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。
发表评论