C++之SocketIO五种模型
1//我们假设客户端的代码如下(为代码直观,省去所有错误检查,以下同):
2 #include <WINSOCK2.H>
3 #include <stdio.h>
4#define SERVER_ADDRESS "137.117.2.148"
5#define PORT 5150
6#define MSGSIZE 1024
7#pragma comment(lib, "ws2_32.lib")
8int main()
9 {
10 WSADATA wsaData;
11 SOCKET sClient;
12 SOCKADDR_IN server;
13char szMessage[MSGSIZE];
14int ret;
15
16// Initialize Windows socket library
17 WSAStartup(0x0202, &wsaData);
18// Create client socket
19 sClient = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
20// Connect to server
21 memset(&server, 0, sizeof(SOCKADDR_IN));
22 server.sin_family = AF_INET;
23 server.sin_addr.S_un.S_addr = inet_addr(SERVER_ADDRESS);
24 server.sin_port = htons(PORT);
25 connect(sClient, (struct sockaddr *)&server, sizeof(SOCKADDR_IN));
26while (TRUE)
27 {
28 printf("Send:");
29 gets(szMessage);
30// Send message
31 send(sClient, szMessage, strlen(szMessage), 0);
32// Receive message
33 ret = recv(sClient, szMessage, MSGSIZE, 0);
34 szMessage[ret] = '\0';
35 printf("Received [%d bytes]: '%s'\n", ret, szMessage);
36 }
37// Clean up
38 closesocket(sClient);
39 WSACleanup();
40return0;
41 }
42/*客户端所做的事情相当简单,创建套接字,连接服务器,然后不停的发送和接收数据。⽐较容易想到的⼀种服务器模型就是采⽤⼀个主线程,负责监听客户端的连接请求,当接收到某个客户端的连接请求后,创建⼀个专门⽤于和该客户端通信的 43⼀.选择模型
44Select(选择)模型是Winsock中最常见的I/O模型。之所以称其为“Select模型”,是由于它的“中⼼思想”便是利⽤select函数,实现对I/O的管理。最初设计该模型时,主要⾯向的是某些使⽤UNIX操作系统的计算机,它们采⽤的是Berkeley套接字⽅ 45下⾯的这段程序就是利⽤选择模型实现的Echo服务器的代码(已经不能再精简了):
46*/
47 #include <winsock.h>
48 #include <stdio.h>
49#define PORT 5150
50#define MSGSIZE 1024
51#pragma comment(lib, "ws2_32.lib")
52int g_iTotalConn = 0;
53 SOCKET g_CliSocketArr[FD_SETSIZE];
54 DWORD WINAPI WorkerThread(LPVOID lpParameter);
55int main()
56 {
57 WSADATA wsaData;
58 SOCKET sListen, sClient;
59 SOCKADDR_IN local, client;
60int iaddrSize = sizeof(SOCKADDR_IN);
61 DWORD dwThreadId;
62// Initialize Windows socket library
63 WSAStartup(0x0202, &wsaData);
64// Create listening socket
65 sListen = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
66// Bind
67 local.sin_addr.S_un.S_addr = htonl(INADDR_ANY);
68 local.sin_family = AF_INET;
69 local.sin_port = htons(PORT);
70 bind(sListen, (struct sockaddr *)&local, sizeof(SOCKADDR_IN));
71// Listen
72 listen(sListen, 3);
73// Create worker thread
74 CreateThread(NULL, 0, WorkerThread, NULL, 0, &dwThreadId);
75while (TRUE)
76 {
77// Accept a connection
78 sClient = accept(sListen, (struct sockaddr *)&client, &iaddrSize);
79 printf("Accepted client:%s:%d\n", inet_ntoa(client.sin_addr), ntohs(client.sin_port));
80// Add socket to g_CliSocketArr
81 g_CliSocketArr[g_iTotalConn++] = sClient;
82 }
83
84return0;
85 }
86 DWORD WINAPI WorkerThread(LPVOID lpParam)
87 {
88int i;
89 fd_set fdread;
90int ret;
91struct timeval tv = {1, 0};
92char szMessage[MSGSIZE];
93
94while (TRUE)
95 {
96 FD_ZERO(&fdread);
97for (i = 0; i < g_iTotalConn; i++)
98 {
99 FD_SET(g_CliSocketArr, &fdread);
100 }
101// We only care read event
102 ret = select(0, &fdread, NULL, NULL, &tv);
103if (ret == 0)
104 {
105// Time expired
106continue;
107 }
108for (i = 0; i < g_iTotalConn; i++)
109 {
110if (FD_ISSET(g_CliSocketArr, &fdread))
111 {
112// A read event happened on g_CliSocketArr
113 ret = recv(g_CliSocketArr, szMessage, MSGSIZE, 0);
114if (ret == 0 || (ret == SOCKET_ERROR && WSAGetLastError() == WSAECONNRESET))
115 {
116// Client socket closed
118 closesocket(g_CliSocketArr);
119if (i < g_iTotalConn - 1)
120 {
121 g_CliSocketArr[i--] = g_CliSocketArr[--g_iTotalConn];
122 }
123 }
124else
125 {
126// We received a message from client
127 szMessage[ret] = '\0';
128 send(g_CliSocketArr, szMessage, strlen(szMessage), 0);
129 }
130 }
131 }
132 }
133return0;
134 }
135/*服务器的⼏个主要动作如下:
1361.创建监听套接字,绑定,监听;
1372.创建⼯作者线程;
1383.创建⼀个套接字数组,⽤来存放当前所有活动的客户端套接字,每accept⼀个连接就更新⼀次数组;
1394.接受客户端的连接。这⾥有⼀点需要注意的,就是我没有重新定义FD_SETSIZE宏,所以服务器最多⽀持的并发连接数为64。⽽且,这⾥决不能⽆条件的accept,服务器应该根据当前的连接数来决定是否接受来⾃某个客户端的连接。⼀种⽐较好140实现的Condition Function。如下所⽰:
141*/
142int CALLBACK ConditionFunc(LPWSABUF lpCallerId,LPWSABUF lpCallerData,
143 LPQOS lpSQOS,LPQOS lpGQOS,LPWSABUF lpCalleeId, LPWSABUF lpCalleeData,GROUP FAR * g,DWORD dwCallbackData)
144 {
145if (当前连接数 < FD_SETSIZE)
146return CF_ACCEPT;
147else
148return CF_REJECT;
149 }
150/*⼯作者线程⾥⾯是⼀个死循环,⼀次循环完成的动作是:
1511.将当前所有的客户端套接字加⼊到读集fdread中;
1522.调⽤select函数;
1533.查看某个套接字是否仍然处于读集中,如果是,则接收数据。如果接收的数据长度为0,或者发⽣WSAECONNRESET错误,则表⽰客户端套接字主动关闭,这时需要将服务器中对应的套接字所绑定的资源释放掉,然后调整我们的套接字数组(154⼆.异步选择
155Winsock提供了⼀个有⽤的异步I/O模型。利⽤这个模型,应⽤程序可在⼀个套接字上,接收以Windows消息为基础的⽹络事件通知。具体的做法是在建好⼀个套接字后,调⽤WSAAsyncSelect函数。该模型最早出现于Winsock的1.1版本中,⽤于156我还是先贴出代码,然后做详细解释:
157*/
158 #include <winsock.h>
159 #include <tchar.h>
160#define PORT 5150
161#define MSGSIZE 1024
162#define WM_SOCKET WM_USER+0
163#pragma comment(lib, "ws2_32.lib")
164 LRESULT CALLBACK WndProc(HWND, UINT, WPARAM, LPARAM);
165int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, PSTR szCmdLine, int iCmdShow)
166 {
167static TCHAR szAppName[] = _T("AsyncSelect Model");
168 HWND hwnd ;
169 MSG msg ;
170 WNDCLASS wndclass ;
171 wndclass.style = CS_HREDRAW | CS_VREDRAW ;
172 wndclass.lpfnWndProc = WndProc ;
173 wndclass.cbClsExtra = 0 ;
174 wndclass.cbWndExtra = 0 ;
175 wndclass.hInstance = hInstance ;
176 wndclass.hIcon = LoadIcon (NULL, IDI_APPLICATION) ;
177 wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;
178 wndclass.hbrBackground = (HBRUSH) GetStockObject (WHITE_BRUSH) ;
179 wndclass.lpszMenuName = NULL ;
180 wndclass.lpszClassName = szAppName ;
181if (!RegisterClass(&wndclass))
182 {
183 MessageBox (NULL, TEXT ("This program requires Windows NT!"), szAppName, MB_ICONERROR) ;
184return0 ;
185 }
186 hwnd = CreateWindow (szAppName, // window class name
187 TEXT ("AsyncSelect Model"), // window caption
188 WS_OVERLAPPEDWINDOW, // window style
189 CW_USEDEFAULT, // initial x position
190 CW_USEDEFAULT, // initial y position
191 CW_USEDEFAULT, // initial x size
192 CW_USEDEFAULT, // initial y size
193 NULL, // parent window handle
194 NULL, // window menu handle
195 hInstance, // program instance handle
196 NULL) ; // creation parameters
197 ShowWindow(hwnd, iCmdShow);
198 UpdateWindow(hwnd);
199while (GetMessage(&msg, NULL, 0, 0))
200 {
201 TranslateMessage(&msg) ;
202 DispatchMessage(&msg) ;
203 }
204
205return msg.wParam;
206 }
207 LRESULT CALLBACK WndProc (HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam)
208 {
209 WSADATA wsd;
210static SOCKET sListen;
211 SOCKET sClient;
212 SOCKADDR_IN local, client;
213int ret, iAddrSize = sizeof(client);
214char szMessage[MSGSIZE];
215switch (message)
216 {
217case WM_CREATE:
218// Initialize Windows Socket library
219 WSAStartup(0x0202, &wsd);
220
221// Create listening socket
222 sListen = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
223
224// Bind
225 local.sin_addr.S_un.S_addr = htonl(INADDR_ANY);
226 local.sin_family = AF_INET;
227 local.sin_port = htons(PORT);
228 bind(sListen, (struct sockaddr *)&local, sizeof(local));
229
230// Listen
231 listen(sListen, 3);
232// Associate listening socket with FD_ACCEPT event
233 WSAAsyncSelect(sListen, hwnd, WM_SOCKET, FD_ACCEPT);
234return0;
235case WM_DESTROY:
236 closesocket(sListen);
237 WSACleanup();
238 PostQuitMessage(0);
239return0;
recv函数242if (WSAGETSELECTERROR(lParam))
243 {
244 closesocket(wParam);
245break;
246 }
247
248switch (WSAGETSELECTEVENT(lParam))
249 {
250case FD_ACCEPT:
251// Accept a connection from client
252 sClient = accept(wParam, (struct sockaddr *)&client, &iAddrSize);
253
254// Associate client socket with FD_READ and FD_CLOSE event
255 WSAAsyncSelect(sClient, hwnd, WM_SOCKET, FD_READ | FD_CLOSE);
256break;
257case FD_READ:
258 ret = recv(wParam, szMessage, MSGSIZE, 0);
259if (ret == 0 || ret == SOCKET_ERROR && WSAGetLastError() == WSAECONNRESET)
260 {
261 closesocket(wParam);
262 }
263else
264 {
265 szMessage[ret] = '\0';
266 send(wParam, szMessage, strlen(szMessage), 0);
267 }
268break;
269
270case FD_CLOSE:
271 closesocket(wParam);
272break;
273 }
274return0;
275 }
276
277return DefWindowProc(hwnd, message, wParam, lParam);
278 }
279
280/*在我看来,WSAAsyncSelect是最简单的⼀种Winsock I/O模型(之所以说它简单是因为⼀个主线程就搞定了)。使⽤Raw Windows API写过窗⼝类应⽤程序的⼈应该都能看得懂。这⾥,我们需要做的仅仅是:
2811.在WM_CREATE消息处理函数中,初始化Windows Socket library,创建监听套接字,绑定,监听,并且调⽤WSAAsyncSelect函数表⽰我们关⼼在监听套接字上发⽣的FD_ACCEPT事件;
2822.⾃定义⼀个消息WM_SOCKET,⼀旦在我们所关⼼的套接字(监听套接字和客户端套接字)上发⽣了某个事件,系统就会调⽤WndProc并且message参数被设置为WM_SOCKET;
2833.在WM_SOCKET的消息处理函数中,分别对FD_ACCEPT、FD_READ和FD_CLOSE事件进⾏处理;
2844.在窗⼝销毁消息(WM_DESTROY)的处理函数中,我们关闭监听套接字,清除Windows Socket library下⾯这张⽤于WSAAsyncSelect函数的⽹络事件类型表可以让你对各个⽹络事件有更清楚的认识:
285表1
286FD_READ 应⽤程序想要接收有关是否可读的通知,以便读⼊数据
287FD_WRITE 应⽤程序想要接收有关是否可写的通知,以便写⼊数据
288FD_OOB 应⽤程序想接收是否有带外(OOB)数据抵达的通知
289FD_ACCEPT 应⽤程序想接收与进⼊连接有关的通知
290FD_CONNECT 应⽤程序想接收与⼀次连接或者多点join操作完成的通知
291FD_CLOSE 应⽤程序想接收与套接字关闭有关的通知
292FD_QOS 应⽤程序想接收套接字“服务质量”(QoS)发⽣更改的通知
293FD_GROUP_QOS 应⽤程序想接收套接字组“服务质量”发⽣更改的通知(现在没什么⽤处,为未来
套接字组的使⽤保留)
294FD_ROUTING_INTERFACE_CHANGE 应⽤程序想接收在指定的⽅向上,与路由接⼝发⽣变化的通知
295FD_ADDRESS_LIST_CHANGE 应⽤程序想接收针对套接字的协议家族,本地地址列表发⽣变化的通知
296三.事件选择
297Winsock提供了另⼀个有⽤的异步I/O模型。和WSAAsyncSelect模型类似的是,它也允许应⽤程序在⼀个或多个套接字上,接收以事件为基础的⽹络事件通知。对于表1总结的、由WSAAsyncSelect模型采⽤的⽹络事件来说,它们均可原封不动地298还是让我们先看代码然后进⾏分析:
299*/
300 #include <winsock2.h>
301 #include <stdio.h>
302#define PORT 5150
303#define MSGSIZE 1024
304#pragma comment(lib, "ws2_32.lib")
305int g_iTotalConn = 0;
306 SOCKET g_CliSocketArr[MAXIMUM_WAIT_OBJECTS];
307 WSAEVENT g_CliEventArr[MAXIMUM_WAIT_OBJECTS];
308 DWORD WINAPI WorkerThread(LPVOID);
309void Cleanup(int index);
310int main()
311 {
312 WSADATA wsaData;
313 SOCKET sListen, sClient;
314 SOCKADDR_IN local, client;
315 DWORD dwThreadId;
316int iaddrSize = sizeof(SOCKADDR_IN);
317// Initialize Windows Socket library
318 WSAStartup(0x0202, &wsaData);
319// Create listening socket
320 sListen = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
321// Bind
322 local.sin_addr.S_un.S_addr = htonl(INADDR_ANY);
323 local.sin_family = AF_INET;
324 local.sin_port = htons(PORT);
325 bind(sListen, (struct sockaddr *)&local, sizeof(SOCKADDR_IN));
326// Listen
327 listen(sListen, 3);
328// Create worker thread
329 CreateThread(NULL, 0, WorkerThread, NULL, 0, &dwThreadId);
330while (TRUE)
331 {
332// Accept a connection
333 sClient = accept(sListen, (struct sockaddr *)&client, &iaddrSize);
334 printf("Accepted client:%s:%d\n", inet_ntoa(client.sin_addr), ntohs(client.sin_port));
335// Associate socket with network event
336 g_CliSocketArr[g_iTotalConn] = sClient;
337 g_CliEventArr[g_iTotalConn] = WSACreateEvent();
338 WSAEventSelect(g_CliSocketArr[g_iTotalConn],
339 g_CliEventArr[g_iTotalConn],
340 FD_READ | FD_CLOSE);
341 g_iTotalConn++;
342 }
343 }
344 DWORD WINAPI WorkerThread(LPVOID lpParam)
345 {
346int ret, index;
347 WSANETWORKEVENTS NetworkEvents;
348char szMessage[MSGSIZE];
349while (TRUE)
350 {
351 ret = WSAWaitForMultipleEvents(g_iTotalConn, g_CliEventArr, FALSE, 1000, FALSE);
352if (ret == WSA_WAIT_FAILED || ret == WSA_WAIT_TIMEOUT)
353 {
354continue;
355 }
356 index = ret - WSA_WAIT_EVENT_0;
357 WSAEnumNetworkEvents(g_CliSocketArr[index], g_CliEventArr[index], &NetworkEvents);
358if (NetworkEvents.lNetworkEvents & FD_READ)
359 {
360// Receive message from client
361 ret = recv(g_CliSocketArr[index], szMessage, MSGSIZE, 0);
362if (ret == 0 || (ret == SOCKET_ERROR && WSAGetLastError() == WSAECONNRESET))
365 }
366else
367 {
368 szMessage[ret] = '\0';
369 send(g_CliSocketArr[index], szMessage, strlen(szMessage), 0);
370 }
371 }
372if (NetworkEvents.lNetworkEvents & FD_CLOSE)
373 {
374 Cleanup(index);
375 }
376 }
377return0;
378 }
379void Cleanup(int index)
380 {
381 closesocket(g_CliSocketArr[index]);
382 WSACloseEvent(g_CliEventArr[index]);
383if (index < g_iTotalConn - 1)
384 {
385 g_CliSocketArr[index] = g_CliSocketArr[g_iTotalConn - 1];
386 g_CliEventArr[index] = g_CliEventArr[g_iTotalConn - 1];
387 }
388
389 g_iTotalConn--;
390 }
391
392/*事件选择模型也⽐较简单,实现起来也不是太复杂,它的基本思想是将每个套接字都和⼀个WSAEVENT对象对应起来,
393并且在关联的时候指定需要关注的哪些⽹络事件。⼀旦在某个套接字上发⽣了我们关注的事件(FD_READ和FD_CLOSE),与之相关联的WSAEVENT对象被Signaled。程序定义了两个全局数组,⼀个套接字数组,⼀个WSAEVENT对象数组,394同样的,这⾥的程序没有考虑两个问题,⼀是不能⽆条件的调⽤accept,因为我们⽀持的并发连接数有限。
395解决⽅法是将套接字按MAXIMUM_WAIT_OBJECTS分组,每MAXIMUM_WAIT_OBJECTS个套接字⼀组,每⼀组分配⼀个
396⼯作者线程;或者采⽤WSAAccept代替accept,并回调⾃⼰定义的Condition Function。第⼆个问题是没有对连接数
397为0的情形做特殊处理,程序在连接数为0的时候CPU占⽤率为100%。
398四.重叠I/O模型
399Winsock2的发布使得Socket I/O有了和⽂件I/O统⼀的接⼝。我们可以通过使⽤Win32⽂件操纵函数ReadFile和
400WriteFile来进⾏Socket I/O。伴随⽽来的,⽤于普通⽂件I/O的重叠I/O模型和完成端⼝模型对Socket I/O也适⽤了。
401这些模型的优点是可以达到更佳的系统性能,但是实现较为复杂,⾥⾯涉及较多的C语⾔技巧。例如我们在完成端⼝
402模型中会经常⽤到所谓的“尾随数据”。
4031.⽤事件通知⽅式实现的重叠I/O模型
404*/
405 #include <winsock2.h>
406 #include <stdio.h>
407#define PORT 5150
408#define MSGSIZE 1024
409#pragma comment(lib, "ws2_32.lib")
410 typedef struct
411 {
412 WSAOVERLAPPED overlap;
413 WSABUF Buffer;
414char szMessage[MSGSIZE];
415 DWORD NumberOfBytesRecvd;
416 DWORD Flags;
417 }PER_IO_OPERATION_DATA, *LPPER_IO_OPERATION_DATA;
418int g_iTotalConn = 0;
419 SOCKET g_CliSocketArr[MAXIMUM_WAIT_OBJECTS];
420 WSAEVENT g_CliEventArr[MAXIMUM_WAIT_OBJECTS];
421 LPPER_IO_OPERATION_DATA g_pPerIODataArr[MAXIMUM_WAIT_OBJECTS];
422 DWORD WINAPI WorkerThread(LPVOID);
423void Cleanup(int);
424int main()
425 {
426 WSADATA wsaData;
427 SOCKET sListen, sClient;
428 SOCKADDR_IN local, client;
429 DWORD dwThreadId;
430int iaddrSize = sizeof(SOCKADDR_IN);
431// Initialize Windows Socket library
432 WSAStartup(0x0202, &wsaData);
433// Create listening socket
434 sListen = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
435// Bind
436 local.sin_addr.S_un.S_addr = htonl(INADDR_ANY);
437 local.sin_family = AF_INET;
438 local.sin_port = htons(PORT);
439 bind(sListen, (struct sockaddr *)&local, sizeof(SOCKADDR_IN));
440// Listen
441 listen(sListen, 3);
442// Create worker thread
443 CreateThread(NULL, 0, WorkerThread, NULL, 0, &dwThreadId);
444while (TRUE)
445 {
446// Accept a connection
447 sClient = accept(sListen, (struct sockaddr *)&client, &iaddrSize);
448 printf("Accepted client:%s:%d\n", inet_ntoa(client.sin_addr), ntohs(client.sin_port));
449 g_CliSocketArr[g_iTotalConn] = sClient;
450
451// Allocate a PER_IO_OPERATION_DATA structure
452 g_pPerIODataArr[g_iTotalConn] = (LPPER_IO_OPERATION_DATA)HeapAlloc(
453 GetProcessHeap(),
454 HEAP_ZERO_MEMORY,
455sizeof(PER_IO_OPERATION_DATA));
456 g_pPerIODataArr[g_iTotalConn]->Buffer.len = MSGSIZE;
457 g_pPerIODataArr[g_iTotalConn]->Buffer.buf = g_pPerIODataArr[g_iTotalConn]->szMessage;
458 g_CliEventArr[g_iTotalConn] = g_pPerIODataArr[g_iTotalConn]->overlap.hEvent = WSACreateEvent();
459// Launch an asynchronous operation
460 WSARecv(
461 g_CliSocketArr[g_iTotalConn],
462 &g_pPerIODataArr[g_iTotalConn]->Buffer,
4631,
464 &g_pPerIODataArr[g_iTotalConn]->NumberOfBytesRecvd,
465 &g_pPerIODataArr[g_iTotalConn]->Flags,
466 &g_pPerIODataArr[g_iTotalConn]->overlap,
467 NULL);
468
469 g_iTotalConn++;
470 }
471
472 closesocket(sListen);
473 WSACleanup();
474return0;
475 }
476 DWORD WINAPI WorkerThread(LPVOID lpParam)
477 {
478int ret, index;
479 DWORD cbTransferred;
480while (TRUE)
481 {
482 ret = WSAWaitForMultipleEvents(g_iTotalConn, g_CliEventArr, FALSE, 1000, FALSE);
483if (ret == WSA_WAIT_FAILED || ret == WSA_WAIT_TIMEOUT)
484 {
485continue;
487 index = ret - WSA_WAIT_EVENT_0;
488 WSAResetEvent(g_CliEventArr[index]);
489 WSAGetOverlappedResult(
490 g_CliSocketArr[index],
491 &g_pPerIODataArr[index]->overlap,
492 &cbTransferred,
493 TRUE,
494 &g_pPerIODataArr[g_iTotalConn]->Flags);
495if (cbTransferred == 0)
496 {
497// The connection was closed by client
498 Cleanup(index);
499 }
500else
501 {
502// g_pPerIODataArr[index]->szMessage contains the received data
503 g_pPerIODataArr[index]->szMessage[cbTransferred] = '\0';
504 send(g_CliSocketArr[index], g_pPerIODataArr[index]->szMessage,\
505 cbTransferred, 0);
506// Launch another asynchronous operation
507 WSARecv(
508 g_CliSocketArr[index],
509 &g_pPerIODataArr[index]->Buffer,
5101,
511 &g_pPerIODataArr[index]->NumberOfBytesRecvd,
512 &g_pPerIODataArr[index]->Flags,
513 &g_pPerIODataArr[index]->overlap,
514 NULL);
515 }
516 }
517return0;
518 }
519void Cleanup(int index)
520 {
521 closesocket(g_CliSocketArr[index]);
522 WSACloseEvent(g_CliEventArr[index]);
523 HeapFree(GetProcessHeap(), 0, g_pPerIODataArr[index]);
524if (index < g_iTotalConn - 1)
525 {
526 g_CliSocketArr[index] = g_CliSocketArr[g_iTotalConn - 1];
527 g_CliEventArr[index] = g_CliEventArr[g_iTotalConn - 1];
528 g_pPerIODataArr[index] = g_pPerIODataArr[g_iTotalConn - 1];
529 }
530 g_pPerIODataArr[--g_iTotalConn] = NULL;
531 }
532
533/*这个模型与上述其他模型不同的是它使⽤Winsock2提供的异步I/O函数WSARecv。在调⽤WSARe
cv时,指定⼀个WSAOVERLAPPED结构,这个调⽤不是阻塞的,也就是说,它会⽴刻返回。⼀旦有数据到达的时候,被指定的WSAOVERLAP 534g_CliEventArr[g_iTotalConn] =g_pPerIODataArr[g_iTotalConn]->overlap.hEvent;
535使得与该套接字相关联的WSAEVENT对象也被Signaled,所以WSAWaitForMultipleEvents的调⽤操作成功返回。
536我们现在应该做的就是⽤与调⽤WSARecv相同的WSAOVERLAPPED结构为参数调⽤WSAGetOverlappedResult,从⽽得到
537本次I/O传送的字节数等相关信息。在取得接收的数据后,把数据原封不动的发送到客户端,然后重新激活⼀个
538WSARecv异步操作。
5392.⽤完成例程⽅式实现的重叠I/O模型
540*/
541 #include <WINSOCK2.H>
542 #include <stdio.h>
543#define PORT 5150
544#define MSGSIZE 1024
545#pragma comment(lib, "ws2_32.lib")
546 typedef struct
547 {
548 WSAOVERLAPPED overlap;
549 WSABUF Buffer;
550char szMessage[MSGSIZE];
551 DWORD NumberOfBytesRecvd;
552 DWORD Flags;
553 SOCKET sClient;
554 }PER_IO_OPERATION_DATA, *LPPER_IO_OPERATION_DATA;
555 DWORD WINAPI WorkerThread(LPVOID);
556void CALLBACK CompletionROUTINE(DWORD, DWORD, LPWSAOVERLAPPED, DWORD);
557 SOCKET g_sNewClientConnection;
558 BOOL g_bNewConnectionArrived = FALSE;
559int main()
560 {
561 WSADATA wsaData;
562 SOCKET sListen;
563 SOCKADDR_IN local, client;
564 DWORD dwThreadId;
565int iaddrSize = sizeof(SOCKADDR_IN);
566// Initialize Windows Socket library
567 WSAStartup(0x0202, &wsaData);
568// Create listening socket
569 sListen = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
570// Bind
571 local.sin_addr.S_un.S_addr = htonl(INADDR_ANY);
572 local.sin_family = AF_INET;
573 local.sin_port = htons(PORT);
574 bind(sListen, (struct sockaddr *)&local, sizeof(SOCKADDR_IN));
575// Listen
576 listen(sListen, 3);
577// Create worker thread
578 CreateThread(NULL, 0, WorkerThread, NULL, 0, &dwThreadId);
579while (TRUE)
580 {
581// Accept a connection
582 g_sNewClientConnection = accept(sListen, (struct sockaddr *)&client, &iaddrSize);
583 g_bNewConnectionArrived = TRUE;
584 printf("Accepted client:%s:%d\n", inet_ntoa(client.sin_addr), ntohs(client.sin_port));
585 }
586 }
587 DWORD WINAPI WorkerThread(LPVOID lpParam)
588 {
589 LPPER_IO_OPERATION_DATA lpPerIOData = NULL;
590while (TRUE)
591 {
592if (g_bNewConnectionArrived)
593 {
594// Launch an asynchronous operation for new arrived connection
595 lpPerIOData = (LPPER_IO_OPERATION_DATA)HeapAlloc(
596 GetProcessHeap(),
597 HEAP_ZERO_MEMORY,
598sizeof(PER_IO_OPERATION_DATA));
599 lpPerIOData->Buffer.len = MSGSIZE;
600 lpPerIOData->Buffer.buf = lpPerIOData->szMessage;
601 lpPerIOData->sClient = g_sNewClientConnection;
602
603 WSARecv(lpPerIOData->sClient,
604 &lpPerIOData->Buffer,
6051,
606 &lpPerIOData->NumberOfBytesRecvd,
607 &lpPerIOData->Flags,
608 &lpPerIOData->overlap,
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。
发表评论