取石子问题
有一种很有意思的游戏,就是有物体若干堆,可以是火柴棍或是围棋子等等均可。两个人轮流从堆中取物体若干,规定最后取光物体者取胜。这是我国民间很古老的一个游戏,别看这游戏极其简单,却蕴含着深刻的数学原理。下面我们来分析一下要如何才能够取胜。
(一)巴什博奕(Bash Game):只有一堆n个物品,两个人轮流从这堆物品中取物,规定每次至少取一个,最多取m个。最后取光者得胜。
    显然,如果n=m+1,那么由于一次最多只能取m个,所以,无论先取者拿走多少个,后取者都能够一次拿走剩余的物品,后者取胜。因此我们发现了如何取胜的法则:如果n=(m+1)r+s,(r为任意自然数,s≤m),那么先取者要拿走s个物品,如果后取者拿走k(≤m)个,那么先取者再拿走m+1-k个,结果剩下(m+1)(r-1)个,以后保持这样的取法,那么先取者肯定获胜。总之,要保持给对手留下(m+1)的倍数,就能最后获胜。
即,若n=k*(m+1),则后取着胜,反之,存在先取者获胜的取法。
n%(m+1)==0. 先取者必败
    这个游戏还可以有一种变相的玩法:两个人轮流报数,每次至少报一个,最多报十个,谁
能报到100者胜。
从一堆100个石子中取石子,最后取完的胜。
(二)威佐夫博奕(Wythoff Game):有两堆各若干个物品,两个人轮流从某一堆或同时从两堆中取同样多的物品,规定每次至少取一个,多者不限,最后取光者得胜。
    这种情况下是颇为复杂的。我们用(ak,bk)(ak ≤ bk ,k=0,1,2,...,n)表示两堆物品的数量并称其为局势,如果甲面对(0,0),那么甲已经输了,这种局势我们称为奇异局势。前几个奇异局势是:(0,0)、(1,2)、(3,5)、(4,7)、(6,10)、(8,13)、(9,15)、(11,18)、(12,20)。
    可以看出,a0=b0=0,ak是未在前面出现过的最小自然数,而 bk= ak + k,奇异局势有
如下三条性质:
    1。任何自然数都包含在一个且仅有一个奇异局势中。
    由于ak是未在前面出现过的最小自然数,所以有ak > ak-1 ,而 bk= ak + k > ak-1 + k-1 = bk-1 > ak-1 。所以性质1。成立。
    2。任意操作都可将奇异局势变为非奇异局势。
    事实上,若只改变奇异局势(ak,bk)的某一个分量,那么另一个分量不可能在其他奇异
局势中,所以必然是非奇异局势。如果使(ak,bk)的两个分量同时减少,则由于其差不变,且不可能是其他奇异局势的差,因此也是非奇异局势。
    3。采用适当的方法,可以将非奇异局势变为奇异局势。
    假设面对的局势是(a,b),若 b = a,则同时从两堆中取走 a 个物体,就变为了奇异局势(0,0);如果a = ak ,b > bk,那么,取走b - bk个物体,即变为奇异局势;如果 a = ak , b < bk ,则同时从两堆中拿走 ak - ab - ak个物体,变为奇异局势( ab - ak , ab - ak+ b - ak);如果a > ak ,b= ak + k,则从第一堆中拿走多余的数量a - ak 即可;如果a < ak ,b= ak + k,分两种情况,第一种,a=aj (j < k),从第二堆里面拿走 b - bj 即可;第二种,a=bj (j < k),从第二堆里面拿走 b - aj 即可。
    从如上性质可知,两个人如果都采用正确操作,那么面对非奇异局势,先拿者必胜;反之,则后拿者取胜。
    那么任给一个局势(a,b),怎样判断它是不是奇异局势呢?我们有如下公式:
    ak =[k(1+√5)/2],bk= ak + k (k=0,1,2,...,n 方括号表示取整函数)
奇妙的是其中出现了黄金分割数(1+√5)/2 = 1。,因此,由ak,bk组成的矩形近似为黄金矩形,由于2/(1+√5)=(√5-1)/2,可以先求出j=[a(√5-1)/2],若a=[j(1+√5)/2],那
么a = aj,bj = aj + j,若不等于,那么a = aj+1,bj+1 = aj+1+ j + 1,若都不是,那么就不是奇异局势。然后再按照上述法则进行,一定会遇到奇异局势。
(三)尼姆博奕(Nimm Game):有三堆各若干个物品,两个人轮流从某一堆取任意多的物品,规定每次至少取一个,多者不限,最后取光者得胜。
    这种情况最有意思,它与二进制有密切关系,我们用(a,b,c)表示某种局势,首先(0,0,0)显然是奇异局势,无论谁面对奇异局势,都必然失败。第二种奇异局势是(0,n,n),只要与对手拿走一样多的物品,最后都将导致(0,0,0)。仔细分析一下,(1,2,3)也是奇异局势,无论对手如何拿,接下来都可以变为(0,n,n)的情形。
    计算机算法里面有一种叫做按位模2加,也叫做异或的运算,我们用符号(+)表示这种运算。这种运算和一般加法不同的一点是1+1=0。先看(1,2,3)的按位模2加的结果:
1 =二进制01
2 =二进制10
3 =二进制11 (+)
———————
0 =二进制00 (注意不进位)
    对于奇异局势(0,n,n)也一样,结果也是0。
    任何奇异局势(a,b,c)都有a(+)b(+)c =0。
如果我们面对的是一个非奇异局势(a,b,c),要如何变为奇异局势呢?假设 a < b< c,我们只要将 c 变为 a(+)b,即可,因为有如下的运算结果: a(+)b(+)(a(+)b)=(a(+)a)(+)(b(+)b)=0(+)0=0。要将c 变为a(+)b,只要从 c中减去 c-(a(+)b)即可。
获胜情况对先取者进行讨论:
异或结果为0,先取者必败,无获胜方法。后取者获胜;
结果不为0,先取者有获胜的取法。
 拓展: 任给N堆石子,两人轮流从任一堆中任取(每次只能取自一堆),取最后一颗石子的人获胜,问先取的人如何获胜?
根据上面所述,N个数异或即可。如果开始的时候T=0,那么先取者必败,如果开始的时候T>0,那么只要每次取出石子使得T=0,即先取者有获胜的方法。
 【综合一、三给出】
任给N堆石子,两人轮流从任一堆中任取(每次只能取自一堆),规定每方每次最多取K颗,取最后一颗石子的一方获胜.问先取的人如何获胜?
与上面的问题比,这个更复杂一些,我们可以这样做
令Bi=Ai mod(K+1)
定义T‘=B1 xor B2 xor ... xor Bn
如果T‘=0 那么没有获胜可能,先取者必败
如果T’>0 那么必然存在取的方法,使得T‘=0,先取者有获胜的方法
假设对方取了在Ai中取了r<=K个
如果Ai中剩下的石子多于K 那么就在Ai中取走K+1-r个则Bi不变 T‘还是0
如果Ai<=K 那么我们需要重新计算Bi和T‘ 按照上面的方法来做就可以了
Nyoj23取石子(一)
时间限制:3000 ms  |  内存限制:65535 KB
难度:2
描述
一天,TT在寝室闲着无聊,和同寝的人玩起了取石子游戏,而由于条件有限,他/她们是用旺仔小馒头当作石子。游戏的规则是这样的。设有一堆石子,数量为N(1<=N<=1000000),两个人轮番取出其中的若干个,每次最多取M个(1<=M<=1000000),最先把石子取完者胜利。我们知道,TT和他/她的室友都十分的聪明,那么如果是TT先取,他/她会取得游戏的胜利么?
输入
第一行是一个正整数n表示有n组测试数据
输入有不到1000组数据,每组数据一行,有两个数N和M,之间用空格分隔。
输出
对于每组数据,输出一行。如果先取的TT可以赢得游戏,则输出“Win”,否则输出“Lose”(引号不用输出)
样例输入
2
1000 1
1 100
样例输出
Lose
Win
#include<stdio.h>
int main()
{
    int n,N,M;
    scanf("%d",&n);
    while(n--)
    {
        scanf("%d %d",&N,&M);
        if(N%(M+1)==0)
            printf("Lose\n");
        else
            printf("Win\n");
    }
    return 0;
}
Ninclude意思yoj135取石子(二)
时间限制:3000 ms  |  内存限制:65535 KB
难度:5
描述
小王喜欢与同事玩一些小游戏,今天他们选择了玩取石子。
游戏规则如下:共有N堆石子,已知每堆中石子的数量,并且规定好每堆石子最多可以取的石子数(最少取1颗)。
两个人轮流取子,每次只能选择N堆石子中的一堆,取一定数量的石子(最少取一个),并且取的石子数量不能多于该堆石子规定好的最多取子数,等哪个人无法取子时就表示此人输掉了游戏。
假设每次都是小王先取石子,并且游戏双方都绝对聪明,现在给你石子的堆数、每堆石子的数量和每堆石子规定的单次取子上限,请判断出小王能否获胜。
输入
第一行是一个整数T表示测试数据的组数(T<100)
每组测试数据的第一行是一个整数N(1<N<100),表示共有N堆石子,随后的N行每行表示一堆石子,这N行中每行有两个数整数m,n表示该堆石子共有m个石子,该堆石子每次最多取n个。(0<=m,n<=2^31)
输出
对于每组测试数据,输出Win表示小王可以获胜,输出Lose表示小王必然会败。
样例输入
2
1
1000 1
2
1 1
1 1
样例输出
Lose
Lose
提示
注意下面一组测试数据
2
1 1 
2 2
正确的结果应该是Win
因为小王会先从第二堆石子中取一个石子,使状态变为
1 1
1 2
这种状态下,无论对方怎么取,小王都能获胜。
#include<stdio.h>
int main()
{
    int n,a,b,sum,x;
    scanf("%d",&n);
    sum=0;

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。